

Madhya Pradesh Metro Rail Corporation Limited (MPMRCL)

(A Joint Venture of Government of India and Government of Madhya Pradesh)

CIN: U75100MP2015SGC034434

2nd Floor, Smart City Development Corporation Limited Office Building,

Kalibadi Road, BHEL, Sector A, Berkheda, Bhopal – 462022, Madhya Pradesh, India

Website- www.mpmetrorail.com

Tel No.: - +91-755-2475607

Corrigendum – 7

No.: 0114/MPMRCL/2022

Date: 31.01.2022

With reference to Tender Notification No.: 1427/MPMRCL/2021/Package BH&IN-02, Date: 02.11.2021, regarding "Design, Manufacture, Supply, Installation, Testing, Commissioning and Training of Standard Gauge Passenger Rolling Stock Cars (with 15 Years Comprehensive Maintenance) – 81 Cars for Bhopal and 75 Cars for Indore, including Signalling & Train Control and Telecommunication Systems (with 7 Years Comprehensive Maintenance)" for Bhopal Metro Rail Project and Indore Metro Rail Project, following corrigendum are issued in pursuant to clause 3.5 of Volume I – ITT. The corrigendum will be part of the said tender document.

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
1	Volume 1 Part-2	As per Clause No.2.3.1 of Part-	In case of Foreign Partners, Power of Attorney(ies) and Board Resolution(s) confirming authority on the	In case of Foreign Partners, Power of Attorney(ies) and Board Resolution(s) confirming authority on the

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
		2:	persons issuing the Power of Attorney for such actions, shall be submitted duly notarised by the notary public in the country of origin and stamped by the Indian Embassy or High Commission. However, the Power of Attorney(ies) and Board Resolution(s) provided by the tenderers from the countries that have signed the Hague Legislation Convention 1961, are not required to be legalised by the Indian Embassy, if it carries a confirming Apostille Certificate. If the documents are in foreign language the translation of the same in English shall be authenticated by Indian Embassy or High Commission.	persons issuing the Power of Attorney for such actions, shall be submitted duly notarised by the notary public in the country of origin and stamped by the Indian Embassy or High Commission. However, the Power of Attorney(ies) and Board Resolution(s) provided by the tenderers from the countries that have signed the Hague Legislation Convention 1961, are not required to be legalised by the Indian Embassy, if it carries a confirming Apostille Certificate. If the documents are in foreign language the translation of the same in English shall be authenticated by Indian Embassy or High Commission. However, due to unavoidable circumstances if embassy is not able to apostille, the document duly notarised may be accepted.
2	Volume I, Part 3: EQC	EQC - 10.3.1, Notes: (xiii) (Page 170 of 239) & Corrigendum-3 S. No. 22	xiii. Tenderers may propose more than one Subcontractor to satisfy these criteria 10.3 [Work Experience for Signalling & Train Control] in tender submission. Each proposed Subcontractor(s) shall be evaluated and the qualified proposed Subcontractor(s) shall be terms as "Specialist Subcontractor". In case, none of the proposed	xiii. Tenderers may propose more than one Subcontractor to satisfy these criteria 10.3 [Work Experience for Signalling & Train Control] in tender submission. Each proposed Subcontractor(s) shall be evaluated and the qualified proposed Subcontractor(s) shall be terms as "Specialist Subcontractor". In case, none of the proposed

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
		(8 of 133)	Subcontractor(s) in tender submissions is meeting these criteria, then the Tender shall be treated as nonresponsive and no alternative proposal shall be considered during tender evaluations. However, the Tenderer/ Contractor shall be free to choose any of the qualified Specialist Subcontractor, or alternatively may propose any new Specialist Subcontractor (after award of the Contract) than those proposed at tender stage, which shall be subject to meeting these criteria and with written approval of the Employer. Quoted rates and prices shall be deemed inclusive for whichever Specialist Subcontractor(s) is(are) appointed, and no adjustment of the rates and prices shall be permitted.	Subcontractor(s) in tender submissions is meeting these criteria, then the Tender shall be treated as nonresponsive and no alternative proposal shall be considered during tender evaluations. However, the Tenderer/ Contractor shall be free to choose any of the qualified Specialist Subcontractor, or alternatively may propose any new Specialist Subcontractor (after award of the Contract) than those proposed at tender stage, which shall be subject to meeting these criteria and with written approval of the Employer. Any new Specialist Subcontractor (after award of the Contract) will be permitted only if the previously qualified proposed Subcontractor is unable to execute the Works for whatsoever reason. Quoted rates and prices shall be deemed inclusive for whichever Specialist Subcontractor(s) is(are) appointed, and no adjustment of the rates and prices shall be permitted.
3	Volume II, PC, Part B: Special Provisions	PC 13.3.1 (1) (215 of 244) & Corrigendum-3	(1) Variations in case of Rolling Stock: The Contractor shall be bound to carry out and complete the stipulated work as instructed by the Engineer.	(1) Variations in case of Rolling Stock: The Contractor shall be bound to carry out and complete the stipulated work as instructed by the Engineer.

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
		S. No. 64 (27 of 133)	The Employer is entitled to vary about increase of the total quantity up to 6 (six) complete 3-car Train- sets, each for Bhopal and Indore. The Employer may exercise the option on any day before 180 days of the scheduled delivery of last trainset/s. The Contractor shall be required to supply increased ordered quantities at the contracted terms & conditions and determined prices as detailed in Pricing Document Sub-Clause 2.15. The Contract Price for Defect Liability and Comprehensive Maintenance Period for the actual	The Employer is entitled to increase the total quantity up to 6 (six) complete 3-car Train-sets, each for Bhopal and Indore. The Employer may exercise the option on any day before 180 days of the scheduled delivery of last trainset/s. The Contractor shall be required to supply increased ordered quantities at the contracted terms & conditions and determined prices as detailed in Pricing Document Sub-Clause 2.15. The Contract Price for Defect Liability and Comprehensive Maintenance Period for the actual
			additional quantities shall be adjusted proportionately.	additional quantities shall be adjusted proportionately.
			In case of increase in quantity beyond the original tendered quantity, the Key Dates for the increased quantities shall be as mutually agreed between the Contractor and the Employer.	In case of increase in quantity beyond the original tendered quantity, the Key Dates for the increased quantities shall be as mutually agreed between the Contractor and the Employer.
			The Employer is entitled to vary about increase of the Comprehensive Maintenance Period to enable the Contractor for completion of major overhaling of Rolling Stock systems/ sub-systems as per scheduled maintenance programme, subject to maximum of 5 (five) years, each for Bhopal and	The Employer is entitled to increase the Comprehensive Maintenance Period to enable the Contractor for completion of major overhaling of Rolling Stock systems / sub-systems as per scheduled maintenance programme, subject to maximum of 5 (five) years, each for Bhopal and Indore. This will be applicable to Rolling Stock scope

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
			Indore. The Employer's decision about the period of extension shall be final and binding on the Contractor. The Employer may exercise the option on any day before 180 days of the scheduled completion of DLCMP. The Contractor shall be required to executed extended DLCMP at the contracted terms & conditions and at the price of last year.	only. The Employer's decision about the period of extension shall be final and binding on the Contractor. The Employer may exercise the option on any day before 180 days of the scheduled completion of DLCMP. The Contractor shall be required to execute the extended DLCMP at the contracted terms & conditions and at the price as given below:Year 16180% Year 17Year 18110% Year 19Year 20130%
4	Volume III Part 1: ERGS- RS	1.1.5 (3rd sentence (11 of 397)	The Contractor shall ensure that major overhaul (except mid-life refurbishment related activities) of all the systems of Rolling Stock have been performed at least once during the contract period.	The Contractor shall ensure that major overhaul (except mid-life refurbishment related activities) of all the systems of Rolling Stock have been performed at least once during the contract period (including extension of 5 years as per PC 13.3.1(1)).
5	Volume III Part 1: ERGS- RS	26.1.4 2 nd sentence (133 of 397)	However, maintenance of M&P procured by MPMRCL (mentioned in Appendix XI) will not come under the scope of Contractor.	Maintenance of M&P procured by MPMRCL (mentioned in Appendix XI) will not come under the scope of Contractor. However, electricity consumption charges of all the depot M&Ps will be borne by the Contractor.

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
6	Volume III Part 1: ERGS- RS	APPENDIX VIII SPARES (Table 1.1) (356 of 397)	S. No. 33: Automatic Track monitoring system complete (with Camera).	Deleted.
7	Volume III Part 2: ERGS -S&T	5.16. Table 1. (66 of 233)	Table1.MandatoryContractorOHS&EManagementRequirement	Refer Attachment – 1 to Corrigendum – 7 for amended Table 1.
8	Volume III Part 2: ERGS -S&T	Appendix 13 N15 (128 of 134)	N15	Refer Attachment – 2 to Corrigendum – 7 for amended Appendix 13, N15
9	Volume III Part 2: ERGS -S&T	Annexure 1 Chapter - 03. (221 of 233)	3 Programme Management Software CPM programming software shall be Primavera Project Planning (P6) Program & TILOS of the latest version. The Contractor shall supply the Employer/Engineer with an original and two (2) copies of licence, including manuals and approved training of the software and any subsequent versions thereof at no extra cost	3 Programme Management Software CPM programming software shall be Primavera Project Planning (P6) Program or the latest version. The Contractor shall supply the Employer/Engineer with an original one copy of licence, including manuals and provide training of the software and any subsequent versions thereof at no extra cost.
10	Volume IV Part 1: ERTS- RS	2.5.8 (2 nd line) (21 of 492)	This shall be submitted within 2 months of Commencement Date and revised and updated for	This shall be revised and updated for the completion of the preliminary, pre-final and final design stages.

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
			the completion of the preliminary, pre-final and final design stages.	
11	Volume IV Part 1: ERTS- RS	2.17.1 (2 nd paragraph) (43 of 492)	The inspection will be based to check the functionalities not covered under Type 4 Service Failure (SF4) and the aesthetics for which the reference will be a guideline that will be finalized during design stage.	The inspection will be based to check all the functionalities and the aesthetics for which the reference will be a guideline that will be finalized during design stage.
12	Volume IV, Part 1: ERTS- RS	2.22.3 (i) & 2.22.5 (i) (49 & 50 of 492)	During Stationary condition the specified limits shall be met with all auxiliary equipment operating simultaneously at maximum capacity.	During Stationary condition the specified limits shall be met with auxiliary equipment operating simultaneously as specified in the latest version of standard mentioned in 2.22.1(ii).
13	Volume IV Part 1: ERTS- RS	2.22.5 (iii) (50 of 492)	For running conditions, the specified limits shall be met for the entire speed range up to 80kmph (including acceleration and deceleration) with all equipment operating simultaneously. Noise level measurement to be done at a location 7.5m horizontally from the track centre-line on a horizontal plane passing through the axle centrelines/floor level.	For running conditions, the specified limits shall be met for the entire speed range as per ISO 3095 (including acceleration and deceleration) with all equipment operating simultaneously. Noise level measurement to be done at the locations as per ISO 3095.
14	Volume IV Part 1: ERTS- RS	2.24.2.5 (52 of 492)	The system shall be able to distinguish between dusty tunnel/saloon environment and other smoke/fume sources such as diesel fumes from smoke being caused by fire.	Deleted.

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
15	Volume IV Part 1: ERTS- RS	3.21.6 (73 of 492)	The Tenderer shall ensure that the cars conform to the latest version of Schedule of Dimension which shall be made available during detail design stage.	The Tenderer shall ensure that the cars conform to the latest version of Schedule of Dimension which shall be made available during detail design stage. However, draft Schedule of Dimension has been attached at attachment-3 of Corrigendum-7 for the Contractor reference but any changes in the final approved SoD by RDSO / RB have to be complied by the Contractor at no extra cost to the Employer.
16	Volume IV Part 1: ERTS- RS	3.23.1 (ii) (74 of 492)	AW1: The weight of the vehicle with all seats occupied and one passenger in a wheelchair, the weight of passenger as 65 kg each.	AW1: The weight of the vehicle with all seats occupied, the weight of passenger as 65 kg each.
17	Volume IV Part 1: ERTS- RS	4.18.4 (vii) (119 of 492)	Flip type seats shall be provided in the wheelchair area.	Deleted.
18	Volume IV Part 1: ERTS- RS	4.18.7 (x) (122 of 492)	The floor, and its mounting structure, shall be designed to withstand any loads that may be applied over 35 years in normal operation of metro train. Floor shall resist to a load of 1.5 times the passenger load corresponding to 10 passenger /m2 (950 daN/m2) and to a stamping effort of 35 daN on a surface.	The floor, and its mounting structure, shall be designed to withstand any loads that may be applied over 35 years in normal operation of metro train. The floor shall be designed for load corresponding to 10 passenger/m2 at least with suitable margin to be decided during design stage. However, damage of floor or loss of aesthetics, on account of floor not being able to resist the required load of passengers may be considered for penalty under clause 2.11

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
				and 2.17.1.
19	Volume IV Part 1: ERTS- RS	5.1.1 (129 of 492)	Further, during contract execution, the manufacture of the bogies by the sub-contractor shall be required to be inspected and certified by a reputed Third- Party Inspecting Agency engaged by the Contractor having sufficient previous experience of similar nature. The contractor's proposal for engaging Third Party Inspecting Agency with detailed terms of reference (TOR) indicating detailed scope of work shall be submitted to Engineer for the approval not later than six (06) months from the commencement date. However, maintaining the quality standards, ensuring performance requirement and timely delivery shall be the sole responsibility of the contractor.	Further, during contract execution, the manufacture of the bogies by the sub-contractor shall be required to be inspected and certified by a reputed Third- Party Inspecting Agency engaged by the Contractor having sufficient previous experience of similar nature. The contractor's proposal for engaging Third Party Inspecting Agency with detailed terms of reference (TOR) indicating detailed scope of work shall be submitted to Engineer for the approval not later than six (06) months from the commencement date. The decision to engage third-party agency will be taken by the Employer/Engineer during design stage. However, maintaining the quality standards, ensuring performance requirement and timely delivery shall be the sole responsibility of the contractor.
20	Volume IV Part 1: ERTS- RS	6.2.5 (Formula) (147 of 492)	Compressor Duty Cycle = [(Total compressor running on load) / (Total vehicle service time)] x100%.	Deleted.

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
21	Volume IV Part 1: ERTS- RS	6.2.18 (Last sentence) (148 of 492)	The motor shall have at least IP65 protection.	The motor shall have at least IP55 protection.
22	Volume IV Part 1: ERTS- RS	6.6.9 (2 nd line) (151 of 492)	The hole shall be sealed with EPDM modular based pipe sealing system with multi diameter technology. EPDM (ethylene – propylene diene monomer) should be low smoke index, halogen free cross- linkable rubber compound.	The hole shall be sealed with proven sealing method. The sealant used should be of low smoke index and halogen free. Final decision will be taken during design stage.
23	Volume IV Part 1: ERTS- RS	6.12.7 (154 of 492)	The friction brake system shall be proven and capable of independently achieving all performance requirements for continuous one round trip with maximum speed of 65 kmph with AW4 load case without the aid of electric regenerative braking for 3-Car and 6-Car. The Contractor shall submit thermal analysis.	The friction brake system shall be proven and capable of independently achieving all performance requirements for continuous one round trip with maximum speed of 50 kmph with AW3 load case without the aid of electric regenerative braking for 3-Car and 6-Car. The Contractor shall submit thermal analysis.
24	Volume IV Part 1: ERTS- RS	6.16.17 (164 of 492)	An emergency brake control system shall be provided by two independent hardwired and fibre optic circuits that shall demand an emergency brake application on all vehicle unless a satisfactory status of all the Train's integral safety devices are proved to be safe.	An emergency brake control system shall be provided by two independent hardwired that shall demand an emergency brake application on all vehicle unless a satisfactory status of all the Train's integral safety devices are proved to be safe.

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
25	Volume IV Part 1: ERTS- RS	8.5.5 (192 of 492)	The arrestor shall consist of a non-linear metal oxide varistor fitted in a porcelain housing, which is sealed off by a flange. This contains a pressure relief device with gas diverter.	The arrestor shall consist of a non-linear metal oxide varistor fitted in a porcelain housing, which is sealed off by a flange. Proven housings with other material can also be used with the approval of Engineer. This contains a pressure relief device with gas diverter.
26	Volume IV Part 1: ERTS- RS	9.5.4 (212 of 492)	The box for battery shall be such that to avoid any corrosion throughout the service life on any account and the box shall last for the lifetime of the cars. Within the battery box, the battery shall be mounted in roll out trays to allow for easy maintenance. The battery box shall be completely sealed against intrusion of dust / water. IP65 level of protection shall be ensured.	The box for battery shall be such that to avoid any corrosion throughout the service life on any account and the box shall last for the lifetime of the cars. Within the battery box, the battery shall be mounted in roll out trays to allow for easy maintenance. The battery box shall be sealed against intrusion of dust / water as required by the design.
27	Volume IV Part 1: ERTS- RS	10.11.5 (ii) (234 of 492)	The overall time required for uploading the software and downloading fault data for all subsystems shall not be more than 15 minutes each and the same shall be demonstrated. The individual Electronic Door Control Unit (EDCU) shall be connected with dedicated port of TCMS to minimize the time taken for data downloading and uploading of door software.	The overall time required for uploading the software and downloading fault data for all subsystems shall not be more than 15 minutes each and the same shall be demonstrated.
28	Volume IV Part 1: ERTS-	12.9.1 (iii) (280 of 492)	The colour of the LEDs shall be white (temperature 3000K-3300K). It shall be ensured that all LEDs are	The colour of the LEDs shall be white (temperature 3000K-5000K, to be decided during design stage).

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
	RS		selected from same bin to avoid any difference in colour and performance.	It shall be ensured that all LEDs are selected from same bin to avoid any difference in colour and performance.
29	Volume IV Part 1: ERTS- RS	13.1.2 (xxiii) (294 of 492)	Cables for PA, PIS and PSSS shall be suitably insulated, screened, armoured and overall outer sheathed. These cables shall also be of fire survival, fire retardant as well as resistant type. The Rolling Stock Contractor shall design and install in such a way that its integrity is ensured until no longer required for evacuation. Full details of standard along with relevant catalogue etc. shall be submitted for review and approval.	Cables for PA, PIS and PSSS shall be suitably insulated, screened, armoured and overall outer sheathed. These cables shall also be of fire survival, fire retardant/resistant type. The Rolling Stock Contractor shall design and install in such a way that its integrity is ensured till it is no longer required for/during evacuation. The integrity of the cable shall also be tested as per EN50289 or equivalent. Full details of integrity duration, standards along with relevant catalogues etc. shall be submitted for review and approval.
30	Volume IV Part 1: ERTS- RS	13.10.27 (2 nd last sentence) (315 of 492)	The Rolling Stock Contractor shall supply, install and commission the track monitoring system at the time of delivery of two trains nominated by the Engineer in each depot.	The Rolling Stock Contractor shall supply, install and commission the track monitoring system at the time of delivery of two trains nominated by the Engineer for each line along with mandatory items (including camera) & tools as approved during design stage.
31	Volume IV Part 1: ERTS- RS	14.16.3 (iv) (337 of 492)	Ducting with top access lids shall be avoided whenever possible and will not be accepted for under floor mounting.	Design of access lid of cable ducting shall be decided during design stage considering maintainability aspect.

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
32	Volume IV Part 2: ERTS- SIG	2.3.5 (16 of 238)	Detrainment of passengers, during DLCMP period, caused due to a failure of Signalling and Train Control system shall call for imposition of penalty on the Contractor, equal to INR Two Lakhs per such event. This provision will become effective section wise after 6 months of revenue operation of that section. The detrainment will be done under following scenario:	Detrainment of passengers, during DLCMP period, caused due to a failure of Signalling and Train Control system shall call for imposition of penalty on the Contractor, equal to INR Fifteen Lakhs per such event. This provision will become effective section wise after 6 months of revenue operation of that section. The detrainment will be done under following scenario:
33	Volume IV Part 2: ERTS- SIG	3.4.8.2 (37 of 238)	Main line & depot Point machines shall be non- trailable type. Main line point machines shall be used in conjunction with additional external mechanical locking arrangement. For Mainline Point Machine shall be Electric; operating on 3-Phase 380/400 V AC Point or suitable machines shall be capable of operating points with Curved / thick web section with UIC HH 60 (60 kg/m) stock rail and 73 kg/m or 90kg/m thick web section. Generally, 1:9/1:7 turnouts for standard gauge will be used. Nominal Switch opening at Toe will be 160 mm. Depot Point Machine shall be electric; operation on 3-Phase 380/400 V AC or 110V DC.	Main line & depot Point machines shall be non- trailable type. Main line point machines shall be used in conjunction with additional external mechanical locking arrangement. For Mainline Point Machine shall be Electric; operating on 3-Phase 380/400 V AC Point or suitable machines shall be capable of operating points with Curved / thick web section with UIC HH 60 (60 kg/m) stock rail and 73 kg/m or 90kg/m thick web section. Generally, 1:9/1:7 turnouts for standard gauge will be used. Nominal Switch opening at Toe will be 160 mm. Depot Point Machine shall be electric; operation on 3-Phase 380/400 V AC (RDSO approved) or 110V DC.
34	Volume IV Part 2: ERTS- SIG	3.4.10.4 (40 of 238)	Separate Interlocking units (CBI) shall be provided at Depot. The Interlocking Capacity in Depot shall have capacity of at least 150% of present Stabling Lines. The area of jurisdiction of the CBIs with associated interlocking shall be configured so as to	Separate Interlocking units (CBI) shall be provided at Depot. The Interlocking Capacity in Depot shall have capacity of at least 150% of present Stabling Lines. The area of jurisdiction of the CBIs with associated interlocking shall be configured so as to

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as Clause Descri existing in the Tender Documents amende	ription (relevant portion) as led now to be read as		
			cover the entire section. The plan (including Quantity) for the same shall be submitted for review by the Engineer. The Contractor shall ensure that the effect of induced voltage is taken into account while designing the location and number of CBI units on the line. Wherever the induced voltage is likely to be more than defined, Object controllers or separate interlocking unit at stations without points and crossings should be provided to cover the entire Line.	over the entire section. The plan (including uantity) for the same shall be submitted for review y the Engineer. The Contractor shall ensure that ie effect of induced voltage is taken into account hile designing the location and number of CBI units in the line. Wherever the induced voltage is likely to e more than defined, Object controllers or separate iterlocking interface unit at stations without points ind crossings should be provided to cover the entire ine.		
35	Volume IV Part 2: ERTS- SIG	3.11.3.1 (47 of 238)	k. Signal number. k. Signal number required)	ər / Virtual Signal marker (as		
36	Volume IV Part 2: ERTS- SIG	3.13.12 (52 of 238)	ATS user profileCentral ATSCBI sector ATSDepot ATSATS user profileCentral ATSDCC depot controllerControl during handoverYESDCC depot durin controllerControl handoverYES	tral CBI sector Depot ATS trol YES YES ng dover		
37	Volume IV Part 2: ERTS- SIG	3.23.3 (57 of 238)	As a minimum the indications shown in Appendix A4 shall be provided from the field to the OCC. A3(I) shall be provided	indications shown in Appendix vided from the field to the OCC.		

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
			Appropriate indications shall also be provided from the field to the SCR.	Appropriate indications shall also be provided from the field to the SCR.
38	Volume IV Part 2: ERTS- SIG	3.29.1 (64 of 238)	Automatic Route Setting the Train Control and Signalling System shall provide communication bands to disable automatic route setting on specific routes and manually set routes in various modes. The following modes shall be available for route setting:	Automatic Route Setting the Train Control and Signalling System shall provide commands to disable automatic route setting on specific routes and manually set routes in various modes. The following modes shall be available for route setting:
39	Volume IV Part 2: ERTS- SIG	3.33.3.2 (78 of 238)	ATS for Depot shall be as per the design criteria (Appendix A3)	ATS for Depot shall be as per the design criteria (Appendix A2)
40	Volume IV Part 3: ERTS- TEL	4.3.10 (43 of 279)	The Contractor shall design the Telephone System with main exchange in the Depot Administration Building CER-OCC and the back-up exchange at the CER-BCC.	The Contractor shall design the Telephone System with fully redundant main exchange in the Depot Administration Building CER-OCC and the fully redundant exchange at the CER-BCC.
41	Volume IV Part 3: ERTS- TEL	6.4.15 (86 of 279)	The Contractor shall design the CCTV system with the OCC primary server at the CER-OCC and the back-up server at the CER-BCC.	The Contractor shall design the CCTV system with fully redundant server (primary plus secondary) at TER-OCC and fully redundant server at the TER-BCC as backup.

Sr. No.	Tender Document Reference	Clause/Sub- Clause/Para (Page No)	Clause Description (relevant portion) as existing in the Tender Documents	Clause Description (relevant portion) as amended now to be read as
42	Volume IV Part 3: ERTS- TEL	Appendix VIII (new added)	New appendix added.	Refer Attachment–4 to Corrigendum-7 for Summary of Equipment of Telecom systems.

The other conditions will remain the same.

Further modifications/amendments (if any) regarding aforesaid tender will be uploaded as and when required.

Managing Director Madhya Pradesh Metro Rail Corporation Limited Bhopal

Attachment – 1 to Corrigendum – 7

Table 1. Mandatory Contractor OHS&E Management Resource Requirement

1	2	3	
Chief OHS&E Manager	Senior OHS&E Manager	Occupational Health Officer with necessary Nursing Assistant	
1	2	1 (FT)	
Note 1Qualified and trained OHS&E Professionals with required support to be deployed for worksite at each shift.		nals with required support staff t.	
Note 2	(FT) means Full-Time.		

Attachment – 2 to Corrigendum – 7

Volume III, Part 2: ER-GS -S&T. Appendix 13, N15 ST/PSD-01:

N15 - Indicative Interface Sheet for Signaling, Train Control and Telecommunication System (S&T) and Platform Screen Door (PSD)

Bhopal and Indore Metro	Contract A	S&T	Contract B		PSD	Rev#:	A0
						Date:	
Interface Sheet							
Approved by:	S&T (Signaling	Train Control and	PSD (Platform	Screen Do	oor)	First Issue:	
	Telecommunicatior	n Systems)					
			Participating Co	ontract			
	Lead Contract						
GC issued by:						Last Change:	
Checked by:						J	
Interface description brief / Ke	y elements (time so	chedule, physical, fu	nctional,):				
_							
1. General Interface detai	Is between the Signa	aling, Train Control and	d Telecommunic	ation Syste	ems (S&T) a	and Platform Scree	n Door (PSD)
	·	•		·			· · ·
Contract A (S&T)	DESIGN	N STAGE Contract B (PSD)			PSD)	
ST/PSD-01: 1 Shall design and r	orovide the Ethernet/	I AN ports at Stations	ST/PSD-01	1 Shall pr	ovide the no	of Ethernet/LAN r	oort requirements to
and Depot TER as n	er requirements prov	vided by PSD system		Tolocomm contractor, and estimated bandwidth required '		adwidth required for	
	ci requirements prov		PCD evoter data transfer from station to station		atotion		
Shall coordinate with PSD contractor for ATS interfaces.				FOD Syste	in uala lian		51811011.
				0.01.11.1.			
3. Shall coordinate with PSD contractor during the installation,				2. Snaii ia	iy the Data/	OFC cable from P	SD network switch/
testing, commission	ing and joint testing.			Server up	to IER FO	IS RACK.	
	- · · ·						

Bhopal and	ndore Metro	Contract A	S&T	Contract	В	PSD	Rev#:	A0
							Date:	
Interface Sh	eet							
					3. Shal	lay Data/Ol	C cable from PSI	D Network switch/
					Server u	up to SER AT	S system.	
				4 Sha	ll coordinate	with S&T contr	actor during the	
					installat	on testing c	ommissioning and ic	int testing
ST/PSD-02: Shall provide the Ethernet requirements of PSD interfaces		ts of PSD interfaces.	ST/PSD-02:	Shall provide the requirement to the S&T. Shall design,				
Coordinating, during installation testing an		g and commissioning.		Install, testing and commissioning the equipment at stations.				
	Coordinate during joint testing.				Perform	joint testing w	vith S&T	
ST/PSD-03:	Shall provide the P	ower requirements fo	or PSD. Coordinating,	STPSD-03:	Shall pr	ovide the load	requirements of PS	D equipment to the
	during installation	testing and commi	issioning. Coordinate		S&T. S	hall design, I	nstall, testing and o	commissioning the
	during joint testing.		-		equipme	ent at stations	. Perform joint testin	g with S&T
ST/PSD-04:	Shall ensure the co	overage of all PSD w	vith CCTV	ST/PSD-04:	Shall fa	cilitate.		
	Contract A (S&T)		CONSTRUCTION / IN	ISTALLATION	STAGE		Contract B (PS	SD)
NIL				NIL				
	Contract A (S&T))	TEST & COMMIS	SIONING STA	GE		Contract B (PS	SD)
NIL		NIL						
	Contract A (S&T))	MAINTENA	NCE STAGE			Contract B (PS	SD)
NIL				NIL		·		

Attachment – 3 to Corrigendum – 7

Draft SoD (Draft Schedule of Dimensions) is attached:

SCHEDULE OF DIMENSIONS (SOD)

FOR

STANDARD GAUGE (1435 mm)

FOR AT-GRADE, ELEVATED AND UNDERGROUND SECTIONS

BHOPAL AND INDORE METRO RAIL SYSTEM

JANUARY 2022

Madhya Pradesh Metro Rail Corporation Limited (MPMRCL)

2nd Floor, Bhopal Smart City Development Corp. Ltd., Sector A, Berkheda, Bhopal – 462023,

Madhya Pradesh, India.

.

BLANK PAGE

TABLE OF CONTENTS

PREAM	IBLE
INTRO	DUCTION
1.	CHAPTER-I: GENERAL
1.1	SPACING OF TRACKS:
1.2	CURVES:
1.3	GRADIENTS:
1.4	BUILDINGS AND STRUCTURES (OUTSIDE STATION AREA)12
1.5	KINEMATIC ENVELOPE (KE):14
1.6	STRUCTURE GAUGE (EXCEPT FOR PASSENGER PLATFORMS):
1.7	EXTRA CLEARANCES ON CURVES:
1.8	MINIMUM TRACK SPACING ON CURVES:
1.9	WALKWAYS
1.10	DERAILMENT GUARDS:
2	CHAPTER – II: STATIONS
2.1	SPACING OF TRACKS AT STATIONS:
2.2	PLATFORMS:
2.3	TRACK GRADIENTS IN PLATFORMS:
2.4	INTERLOCKING AND SIGNAL GEAR:
2.5	POINTS AND CROSSING:
2.6	SUPER ELEVATION AND SPEED ON CURVES WITH TURNOUTS OF CONTRARY AND SIMILAR FLEXURE:
2.7	ADDITIONAL CLEARANCE FOR PLATFORMS ON CURVES:
3	CHAPTER - III: ROLLING STOCK
3.1	PASSENGER ELECTRIC MULTIPLE UNITS:
3.2	LOCOMOTIVES AND ENGINEERING SERVICE VEHICLES
4	CHAPTER - IV: ELECTRIC TRACTION
4.1	ELECTRIC TRACTION - 750 V DC THIRD RAIL WITH BOTTOM CURRENT COLLECTION:
5	CHAPTER – V: PLATFORM SCREEN DOORS / GATES
5.1	PLATFORM SCREEN DOORS AND GATES SETTING OUT:

LIST OF APPENDICES

Appendix no.	Description	Page no.
APPENDIX 1	PERMISSIBLE SPEED, CANT AND MINIMUM TRACK SPACING ON CURVES	32
APPENDIX 2A	EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) – AT GRADE (SURFACE) SECTIONS (BALLASTED TRACK) – INSIDE OF CURVE	33
APPENDIX 2B	EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) – AT-GRADE (SURFACE) SECTIONS (BALLASTED TRACK) – OUTSIDE OF CURVE	34
APPENDIX 2C	EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) – TUNNEL/ELEVATED/AT-GRADE (SURFACE) SECTIONS (BALLASTED TRACK) – INSIDE OF CURVE	35
APPENDIX 2D	EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) – TUNNEL/ELEVATED/AT-GRADE (SURFACE) SECTIONS (BALLASTLESS TRACK) – OUTSIDE OF CURVE	36
APPENDIX 3A	CANT EFFECT ON STRUCTURE GAUGE – AT-GRADE (SURFACE) SECTION (BALLASTED TRACK)	37
APPENDIX 3B	CANT EFFECT ON STRUCTURE GAUGE – ELEVATED AND AT-GRADE (SURFACE) SECTION (BALLASTLESS TRACK)	38
APPENDIX 3C	CANT EFFECT ON STRUCTURE GAUGE – UNDERGROUND SECTION (RECTANGULAR BOX TUNNELS) BALLASTLESS TRACK	39
APPENDIX 3D	CANT EFFECT ON KINEMATIC ENVELOPE AT-GRADE (SURFACE) SECTION - BALLASTED TRACK	40
APPENDIX 3E	CANT EFFECT ON KINEMATIC ENVELOPE – ELEVATED/UNDERGROUND & AT-GRADE (SURFACE) BALLASTLESS TRACK	41
APPENDIX 4	LATERAL AND VERTICAL SHIFT OF CENTRE OF CIRCULAR TUNNEL FOR DIFFERENT CANT VALUES	42
APPENDIX 5	ADDITIONAL CLEARANCE FOR PLATFORMS ON CURVES UNDERGROUND, ELEVATED AND SURFACE SECTIONS	43

LIST OF FIGURES:

Sr. No	Drawing No.	Drawing Title	Page No.
1	MPMRCL/GEN/SOD/GEN-01	EFFECT OF CANT ON STRUCTURE GAUGE (TYPICAL)	44
2	MPMRCL/GEN/SOD/GEN-02	EFFECT OF VERTICAL CURVE ON STRUCTURE GAUGE	45
3	MPMRCL/GEN/SOD/GEN-03	EFFECT OF CANT ON KINEMATIC ENVELOPE (TYPICAL)	46
4	MPMRCL/GEN/SOD/ELE-01	KINEMATIC ENVELOPE FOR AT-GRADE & ELEVATED SECTION WITH BALLASTLESS TRACK ON LEVEL/CONSTANT GRADE (TANGENT TRACK) OUTSIDE STATION	47
5	MPMRCL/GEN/SOD/UND-02	KINEMATIC ENVELOPE FOR UNDERGROUND SECTION WITH BALLASTLESS TRACK ON LEVEL / CONSTANT GRADE (TANGENT TRACK) OUTSIDE STATION	48
6	MPMRCL/GEN/SOD/ATG-01	KINEMATIC ENVELOPE FOR SURFACE (AT— GRADE) SECTION BALLASTED TRACK ON LEVEL/CONSTANT GRADE (TANGENT TRACK) OUTSIDE STATION	49
7	MPMRCL/GEN/SOD/ELE & UND	KINEMATIC ENVELOPE FOR UNDERGROUND & AT—GRADE SECTION AND ELEVATED SECTION WITH BALLASTLESS TRACK OVER PLATFORM LINE ON LEVEL/CONSTANT GRADE (TANGENT TRACK) — (SPEED — 70kmph)	50
8	MPMRCL/GEN/SOD/ELE-02	STRUCTURE GAUGE ON ELEVATED & AT— GRADE SECTION BALLASTLESS TRACK ON LEVEL/CONSTANT GRADE TRACK (TANGENT TRACK) OUTSIDE STATION	51
9	MPMRCL/GEN/SOD/UND-01	STRUCTURE GAUGE FOR UNDERGROUND SECTION (CIRCULAR TUNNELS) WITH BALLASTLESS TRACK ON LEVEL/CONSTANT GRADE (TANGENT TRACK)	52
10	MPMRCL/GEN/SOD/UND-03	STRUCTURE GAUGE FOR UNDERGROUND SECTION (RECTANGULAR BOX TUNNELS)	53

Sr. No	Drawing No.	Drawing Title	Page No.
		WITH BALLASTLESS TRACK ON LEVEL/CONSTANT GRADE (TANGENT TRACK)	
11	MPMRCL/GEN/SOD/ATG-02	STRUCTURE GAUGE FOR AT-GRADE SECTION (BALLASTED) TRACK ON LEVEL/CONSTANT TRACK (TANGENT TRACK) OUTSIDE STATION	54
12	MPMRCL/GEN/SOD/UND-04	CLEARANCE OF THE CENTRE OF CIRCULAR TUNNEL DUE TO ROTATION OF TRACK FOR CANT	55
13	MPMRCL/GEN/SOD/ELE-03	STRUCTURE GAUGE FOR ELEVATED/AT— GRADE STATION WITH 4m WIDE (MINIMUM) SIDE PLATFORMS WITH BALLASTLESS TRACK ON LEVEL/CONSTANT GRADE TRACK WITHOUT PLATFORM SCREEN GATE	56
14	MPMRCL/GEN/SOD/ELE-04	STRUCTURE GAUGE FOR ELEVATED/AT— GRADE STATION WITH AN ISLAND PLATFORM ON LEVEL/CONSTANT GRADE (TANGENT TRACK) WITHOUT PLATFORM SCREEN GATE	57
15	MPMRCL/GEN/SOD/ELE-05	STRUCTURE GAUGE AT ELEVATED/AT— GRADE STATION WITH 4m WIDE (MIN.) SIDE PLATFORM WITH BALLASTLESS TRACK ON LEVEL / CONSTANT GRADE TRACK WITH PLATFORM SCREEN GATE	58
16	MPMRCL/GEN/SOD/ELE-06	STRUCTURE GAUGE FOR ELEVATED/AT— GRADE STATION WITH AN ISLAND PLATFORM ON LEVEL/CONSTANT GRADE (TANGENT TRACK) WITH PLATFORM SCREEN GATE	59
17	MPMRCL/GEN/SOD/UND-05	STRUCTURE GAUGE FOR UNDERGROUND STATION WITH SIDE PLATFORM ON LEVEL/CONSTANT GRADE (TANGENT TRACK) WITHOUT PLATFORM SCREEN DOOR	60
18	MPMRCL/GEN/SOD/UND-06	STRUCTURE GAUGE FOR UNDERGROUND STATION WITH AN ISLAND PLATFORM ON LEVEL/CONSTANT GRADE (TANGENT TRACK) WITHOUT PLATFORM SCREEN DOOR	61

Sr. No	Drawing No.	Drawing Title	Page No.
19	MPMRCL/GEN/SOD/UND-07	STRUCTURE GAUGE FOR UNDERGROUND STATION WITH SIDE PLATFORM ON LEVEL/CONSTANT GRADE (TANGENT TRACK) WITH PLATFORM SCREEN DOOR	62
20	MPMRCL/GEN/SOD/UND-08	STRUCTURE GAUGE FOR UNDERGROUND STATION WITH AN ISLAND PLATFORM ON LEVEL/CONSTANT GRADE (TANGENT TRACK) WITH PLATFORM SCREEN DOOR	63
21	MPMRCL/GEN/SOD/PSD-01	STATIC AND KINEMATIC ENVELOPE FOR UNDERGROUND STATIONS WITH PLATFORM SCREEN DOOR	64
22	MPMRCL/GEN/SOD/PSD-02	PLATFORM GATE AT ELEVATED/AT-GRADE (STATION) ON LEVEL/CONSTANT GRADE (TANGENT TRACK)	65
23	MPMRCL/GEN/SOD/UND- DR-01A	DERAILMENT PROFILE FOR UNDERGROUND SECTION (CIRCULAR TUNNELS) WITH BALLASTLESS TRACK MAX. CANT & MIN. RADIUS OF CURVE	66
24	MPMRCL/GEN/SOD/UND- DR-01B	DERAILMENT PROFILE FOR UNDERGROUND SECTION (CIRCULAR TUNNELS) WITH BALLASTLESS TRACK MAX. CANT & MIN. RADIUS OF CURVE	67
25	MPMRCL/GEN/SOD/TR-01	THIRD RAIL CURRENT COLLECTION SYSTEM	68

SCHEDULE OF DIMENSIONS (SOD) STANDARD GAUGE (1435 mm)

PREAMBLE

The Schedule of Dimensions (SOD) has been prepared for the Bhopal and Indore Metro Rail Projects having Standard Gauge (1435mm) with a third rail bottom current collection using 750V DC Traction system and end to end evacuation.

This SOD has been prepared based on following guidelines:

- 1. The SOD has been developed assuming certain coach dimensions and design characteristics, as well as track and coach maintenance tolerances. Whenever, a new stock is introduced the track and coach maintenance tolerances should be laid down. The suitability of the Rolling Stock for operation with these maintenance tolerances should be established and sanction shall be obtained from the competent authority before the operation of the Rolling Stock.
- The Kinematic Envelope has been developed for 2900 mm wide and 4080 mm high Rolling Stock. The Kinematic Envelope has been developed taking into account the entire Track and the Rolling Stock Maintenance Tolerances.
- 3. The clearances are based on assumption that windows are sealed and doors are closed during movement.
- 4. Track and Rolling stock shall be maintained to the tolerances considered for calculation of Kinematic Envelope.
- 5. The Structure Gauge indicated in SOD shall not be violated under any circumstances except for platform coping, designated operational structures such as platform screen door/gate structures including structural support, hand railing in back-of-house, platform edge, track access gates, the third rail conductor with its feeding arrangement, and support structure for third rail and platform screen doors/gates etc.
- 6. The vehicle Kinematic Envelope at wind speed of 70 kmph shall be applied for the platform area on At-Grade, Elevated stations and 42 kmph* wind speed for Underground stations within the confines of stations. At all other locations, the Kinematic Envelope corresponding to 100 kmph wind speed shall be used for determining the Structure Gauge for Elevated and At-Grade sections (outside the station area) and 42 kmph wind speed for underground sections (outside the station area).(*42kmph side wind represents 100 Pa gauge pressure considered as buffeting effect.)
- 7. Metro operation shall be stopped when Wind speed reaches 100 kmph or more. Continuous recording of wind speed shall be done at critical locations defined by metro administration. The speed of trains on elevated or at- grade station shall be restricted to 40 kmph, when wind speed is more than 70 kmph.

 Maximum design speed is 90 KMPH and operating speed shall be 80 KMPH (except at stations). Operating speed at stations shall be 70 KMPH. Operating speed in depot shall be 25 Kmph.

The operating speed on diversion lines at turnouts having:

- (i) Weldable CMS crossing (1 in 9) and thick web switch with 300 m radius of lead curve rail shall be 45 kmph.
- (ii) Weldable CMS crossing (1 in 9) and thick web switch with 190 m radius of lead curve rail shall be 35 kmph.
- (iii) Weldable CMS crossing (1 in 7) and thick web switch with 190 m radius of lead curve rail shall be 35 kmph.
- (iv) Weldable CMS crossing (1 in 7) and thick web switch with 140 m radius of lead curve rail shall be 25 kmph."
- 9. The Kinematic Envelope at stations and Structure Gauge for all locations other than stations shall not be infringed under any circumstances.
- 10. No work/workmen/equipment are allowed between Vehicle and Structure gauge during operation of trains.
- 11. Electrical Clearances should be measured from Kinematic Envelope of rolling stock.
- 12. The train operation will be stopped in affected section by central control if any one of the trains in UP or DN direction derails. The operation will remain suspended till the clearance given by Accident site Manager from the site by exchange of private number with Central control.

SCHEDULE OF DIMENSIONS (1435 mm STANADARD GAUGE)

INTRODUCTION

- The dimensions given in this Schedule of Dimensions (SOD) are to be observed in all works on 1435 mm Standard Gauge unless prior sanction has been obtained from the Railway Board through the Commissioner of Metro Rail Safety (CMRS) to execute works which infringe this SOD.
- 2. Any condonation in SOD parameters will require approval by Railway Board through the Chief Commissioner of Railway Safety (CCRS).
- 3. The dimensions given in this SOD are applicable to At-grade, Elevated and Underground sections of the Bhopal and Indore Metro Rail Projects, which will have a 750Volts DC Traction system with Third rail bottom current collection and track rail return current. The Rolling Stock shall be 2900mm wide and 4080 mm maximum height with sealed windows and sliding doors, which shall all remain closed when the train is in motion.
- 4. The Underground sections may be with Circular Tunnel or Rectangular Box or open cut (at ramps) or of any other suitable shape. The Elevated sections shall be above ground structures such as Viaducts. Both Underground and Elevated sections shall have suitably designed ballastless track, Direct Fixation Fastening (DFF) type. The At-Grade section and the Depot area may be with ballasted or ballastless track.

Sr. No	Description	Remarks
1	Chapter-1	General
2	Chapter-2	Stations
3	Chapter-3	Rolling Stock
4	Chapter-4	Electric Traction
5	Chapter-5	Platform Screen Doors / Gates

5. The Schedule of Dimensions (SOD) has been divided into five chapters as under:

1. CHAPTER-I: GENERAL

1.1 SPACING OF TRACKS:

1.1.1 Minimum distance, centre to centre of tracks without any structure in between, for Tangent (Straight) tracks for:

a)	Underground section	:	3650 mm
b)	Elevated section	:	3750 mm
c)	Surface (At-Grade) sections (Ballasted section)	:	3800 mm
d)	Surface (At-Grade) sections (Ballastless section)	:	3750 mm

Note: For minimum track centres distance on curves, refer Appendix-1 at Page no. 32

1.2 CURVES:

1.2.1.1

- 1.2.1 Minimum radius of curvature (Horizontal)
 - a) On main running lines, other than stations:

	i)	Underground section:	:	200 m
	ii)	At-Grade and Elevated sections:	:	120 m
b)	Dep	oot, Yard and other non-passenger Lines:	:	100 m
c)	At S	Station Passenger Platforms	:	1000 m
The minimum transition length -		-	15m	

- 1.2.1.2 Length of straight between two transition curves should be minimum 25 m on passenger lines and at locations where 25 m is not possible, common tangent point shall be provided.
- 1.2.2 Check Rail / Restraining Rail:
 - a) Check rails / Restraining Rails should be provided on curves on main line where radius is 190 m or less on Standard gauge. The clearance of check rails / restraining rails shall be suitably decided by Metro Authority.
 - b) Check rails / Restraining Rails are not mandatory for curves in depots, yards and other non-passenger lines. However, if check rails are not provided, train speed shall be restricted to 25 kmph or the safe speed, whichever is lower.
- 1.2.3 Cant & Cant Deficiency

a)	Maximum permissible Cant (Ca)	:	125 mm
b)	Maximum desirable Cant (Ca)	:	110 mm
c)	Maximum permissible Cant deficiency (Cd)	:	100 mm
d)	Maximum desirable Cant deficiency (Cd)	:	85 mm
e)	Maximum Cant Gradient	:	1 in 440
f)	Maximum Cant Excess (Ce)	:	75mm
g)	Maximum rate of change of cant	:	55mm/sec
h)	Maximum rate of change of cant deficiency	:	55mm/sec
i)	Maximum lateral acceleration	:	0.55m/sec2

1.2.4 Vertical Curve

a)	Minimum radius	:	1500 m
b)	Minimum length of vertical curve	:	20m

Note: No Vertical curve shall be provided in Platform area

1.3 GRADIENTS:

1.3.1 Maximum Permissible Gradient on mid-section (compensated) shall be 4%

Notes:

- i) There shall be no change of gradient in transition portion of horizontal curves.
- ii) The grade compensation for curvature shall be considered at the rate of 0.04% per Degree of curve.
- iii) Degree of Curve = 1746.29 / R, 'R' is the radius in 'm'.
- 1.3.2 Maximum permissible gradient on turnouts.

a)	On Ballasted Track	:	0.25%
b)	On Ballastless Track	:	3.00%

Note:

- There shall be no change of gradient (i.e. vertical curve) on and within 15 m (desirable) and 3 m (minimum) of any turnout on Ballastless track. In case of Ballasted track, there shall be no change of gradient on and within 30 m of any turnout.
- ii) There shall be no horizontal curve within 15 m (desirable) and 3 m (minimum) of any turnout on Ballastless Track and 30 m of any turnout on Ballasted Track.
- iii) Turnouts shall normally be installed on straight track. In exceptional situations, turnout may take off from a curve provided that the radius of the lead curve (main line as well as diverging line) is not less than 190 m. The negotiability of rolling stock on such turnouts must be certified by the rolling stock supplier and confirmed through oscillation trials, and a suitable speed restriction should be imposed on the main and / or diverging line based on track geometry and other considerations, if required. In case of turnout installed on curved track, the minimum distance for commencement of vertical curve or another horizontal curve shall be 15 m for Ballastless track. Turnout shall not be laid on transition curve.
- iv) The limit of turnout for the above purposes shall be taken from the Stock Rail Joint (SRJ) to end (i.e. heel) of the crossing for Ballastless track. For Ballasted track, it shall be from the SRJ to the last common sleeper behind end of the crossing.
- v) The maximum permissible gradient on turnout and the location of turnout with respect to vertical/horizontal curves in vicinity shall be ensured by Metro Authority that the Rolling Stock is fit to negotiate these gradients.
- vi) The above stipulations shall also be applicable for the turnout to be laid outside station limit, if any.

1.4 BUILDINGS AND STRUCTURES (OUTSIDE STATION AREA)

The minimum horizontal distance from the centre of the track to any structure (except for a passenger platform and the Third Rail) for heights above Rail Level on tangent track on level or constant grade shall be as below:

1.4.1 Underground Sections

1. Circular Tunnel

Sr.no.	Height from Rail Level	Horizontal Distance from C/L of track
i.	Up to Rail 348 mm	1680 mm
ii.	At 348 mm	1554 mm
iii.	348 mm to 679 mm	1554 mm increasing to 1638 mm
iv.	679 mm to 885 mm	1638 mm increasing to 1676 mm
v.	885 mm to 2884 mm	1676 mm increasing to 1729 mm
vi.	2884 mm to 3320 mm	1729 mm
vii.	3320 mm to 4064 mm	1729 mm decreasing to 1170 mm
viii.	4064 mm to 4246 mm	1170 mm increasing to 1040 mm
ix.	4246 mm to 4300 mm	1040 mm increasing to 833 mm

Refer Drawing no. MPMRCL/GEN/SOD/UND-01 at Page no. 52

2. Rectangular Box Tunnel

Sr.no.	Height from Rail Level	Horizontal Distance from C/L of track
i.	Up to Rail 348 mm	1680 mm
ii.	At 348 mm	1554 mm
iii.	348 mm to 679 mm	1554 mm increasing to 1638 mm
iv.	679 mm to 885 mm	1638 mm increasing to 1676 mm
٧.	885 mm to 2884 mm	1676 mm increasing to 1729 mm
vi.	2884 mm to 3320 mm	1729 mm
vii.	3320 mm to 4064 mm	1729 mm decreasing to 1170 mm
viii.	4064 mm to 4246 mm	1170 mm increasing to 1040 mm
ix.	4246 mm to 4300 mm	1040 mm increasing to 833 mm

Refer Drawing no. MPMRCL/GEN/SOD/UND-03 at Page no. 53

1.4.2 Elevated and Surface (At-Grade) Sections (Ballastless Track)

Sr. no.	Height from Rail Level	Horizontal Distance from C/L of track
i.	From Rail Level to 348 mm	1730 mm
ii.	At 348 mm	1730 mm decreasing to 1607 mm
iii.	348 mm to 666 mm	1607 mm increasing to 1696 mm
iv.	666 mm to 879 mm	1696 mm increasing to 1736 mm
۷.	879 mm to 2873 mm	1736 mm increasing to 1808 mm
vi.	2873 mm to 3338 mm	1808 mm
vii.	3338 mm to 4058 mm	1808 mm decreasing to 1374 mm
viii.	4058 mm to 4350 mm	1374 mm decreasing to 1366 mm

Refer Drawing no. MPMRCL/GEN/SOD/ELE-02 at Page no. 51

1.4.3 Surface (At-Grade) Sections (Ballasted Track)

Sr. no.	Height from Rail Level	Horizontal Distance from C/L of track
i.	From Rail Level to 901 mm	1765 mm
ii.	901mm to 2032 mm	1765 mm increasing to 1813 mm
iii.	2032mm to 3356 mm	1813 mm increasing to 1835 mm
iv.	3356mm to 4058 mm	1835 mm decreasing to 1374 mm
۷.	4058m to 4359 mm	1374 mm decreasing to 1366 mm

Refer Drawing no. MPMRCL/GEN/SOD/ATG-02 at Page no. 54

Notes for 1.4.1. 1.4.2 and 1.4.3:

- i) Extra clearance shall be provided for curves as laid down at Para 1.7.
- ii) The term 'Structure' covers any item including light ones like ladders, isolated posts, cable etc. erected alongside the track.
- iii) For At-Grade and Elevated Sections, a clearance of minimum 150 mm has been considered over the Kinematic Envelope to arrive at the Structure Gauge. For Underground Sections this clearance is 100 mm.

1.5 KINEMATIC ENVELOPE (KE):

- a) For a Kinematic Envelope for level or constant grade (tangent track) outside Platform area, refer to:
 - Drawing no. MPMRCL/GEN/SOD/ELE-01 at Page no. 47
 - Drawing no. MPMRCL/GEN/SOD/UND-02 at Page no. 48
 - Drawing no. MPMRCL/GEN/SOD/ATG-01 at Page no. 49

 b) For Kinematic Envelope for level or constant grade (tangent track) in Platform area, refer to - Drawing no. MPMRCL/GEN/SOD/ELE&UND – 70 kmph at Page no. 50.

1.6 STRUCTURE GAUGE (Except for Passenger Platforms):

1.6.1 **Underground sections:**

The Structure Gauge (Fixed Structure Line) outside platform area has been arrived at by allowing minimum clearance of 100 mm to Kinematic Envelope for Underground sections.

- a) For Structure Gauge on Underground Sections (Circular Tunnel) with Ballastless track for level and constant grade (tangent track), Refer drawing no. MPMRCL/GEN/SOD/UND-01 at Page no. 52.
- b) For Structure Gauge on Underground Sections by cut and cover Tunnel or ramp with Ballastless Track for level and constant grade (tangent track) Refer drawing MPMRCL/GEN/SOD/UND-03 at Page no. 53.

Note: Extra allowance shall be provided for curves as laid down at Para 1.7

1.6.2 **Elevated and At-Grade sections with Ballastless Track.**

The Structure Gauge (Fixed Structure Line) has been arrived at by allowing a minimum clearance of 150 mm to Kinematic Envelope for Elevated and At-Grade sections.

a) For Structure Gauge on Elevated Sections and At-Grade sections outside stations with Ballastless Track for level or constant grade (tangent track) refer to drawing number MPMRCL/GEN/SOD/ELE-02 at Page no. 51.

Note: Extra clearances shall be provided for curves as laid down at Para 1.7.

1.6.3 Surface (At-Grade) section with Ballasted Track.

The Structure Gauge (Fixed Structure Line) has been arrived at by allowing a minimum clearance of 150 mm to Kinematic Envelope.

For Structure Gauge on At-Grade sections (outside stations) with ballasted track for level and constant grade (tangent track). Refer to drawing no. MPMRCL/GEN/SOD/ATG - 02 at Page no. 54.

Note: Extra allowance shall be provided for curves as laid down at Para 1.7.

1.7 EXTRA CLEARANCES ON CURVES:

Following are the extra allowances for Curves.

1.7.1 **Inside of Curve:**

A. Curvature effect:

- a) Mid throw at the centre of the Vehicle = V (in mm) = $125 \text{ C}^2/\text{ R}$
- b) Lateral shift due to gauge widening on curves, is 9 mm for curves sharper than 500m radius and 5 mm for curves of radius 500m to 1000m.
- c) Lateral shift for nosing is 32 mm for ballasted track and 28mm for ballastless track.

For values of curvature effect,

i) For At-Grade (Surface) Sections – Ballasted Track refer Appendix – 2A at

Page no. 33 and Appendix – 2B at Page no. 34.

ii) For Tunnel, Elevated and At-Grade (Surface) Sections – Ballastless Track refer Appendix – 2C at Page no. 35 and Appendix – 2D at Page no. 36.

Notes:

i) <u>Underground, Elevated and At-Grade Ballastless sections</u>:

Lateral shift of 28 mm due to nosing is included in Kinematic Envelope for Underground, Elevated and At-Grade Sections with ballastless track for tangent track (and as a result, also included in Structure Gauge) which shall be subtracted from the total extra allowance worked out as at Para 1.7.1 (A) above if the value of mid throw (V) is equal to or greater than 28 mm. However, if the value of mid throw (V) is less than 28 mm, the curvature effect shall be due to widening of the gauge only (mid throw minus 28 mm shall be taken as zero).

ii) At-Grade (Surface) Ballasted sections:

Lateral shift of 32mm due to nosing is included in Kinematic Envelope for Atgrade (Surface) sections with ballasted track for tangent track (and as a result, also included in Structure Gauge) which shall be subtracted from the total extra allowance worked out as in Para 1.7.1(A) above if the value of mid throw (V) is equal to or greater than 32 mm. However, if the value of mid throw (V) is less than 32 mm, the curvature effect shall be due to widening of the gauge only (mid throw minus 32 mm shall be taken as zero).

B. Clearance for Cant:

a. <u>Underground (box structures), Elevated and At-grade sections:</u>

The lean 'L' due to Cant at any point at height 'h' above Rail Level is given by:

 $L = C_{a x} h / G$ (all in mm),

Where, G = 1435 + c = 1507 mm

'c' being the rail head width, and 'Ca' being the Cant.

Values of Cant effect on Structure Gauge for inside of a curve with only the Cant effect, as shown in MPMRCL/GEN/SOD/GEN-01 at Page no. 44 is as under:

- i) For At-Grade (Surface) Sections Ballasted Track refer Appendix - 3A at Page no. 37.
- ii) For Elevated and At-Grade (Surface) Sections- Ballastless Track refer Appendix 3B at Page no. 38.
- iii) For Box Structures of Underground Sections- Ballastless Track refer Appendix - 3C at Page no. 39.
- b. <u>Circular Tunnels</u>:

In the case of Circular Tunnel, the Cant is provided by raising the outer rail and suitably shifting the centre of the Circular Tunnel towards inside of curve and upwards. This has the same effect as assuming rotation of the Circular Tunnel about midpoint of top inner rail resulting in shift of Tunnel

centre laterally towards inside of curve and also vertically upwards.

For values of horizontal and vertical shifts of centre of Circular Tunnel for different values of Cant, refer to Appendix – 4 at Page no. 42 and drawing no. MPMRCL/GEN/SOD/UND-04 at Page no. 55.

C. Clearance for Vertical Curve (Vertical Throw):

a) Vertical Throw V1 and V2 (in mm) for vertical curves shall be calculated as below:

V1 (with vehicle centre in sag or vehicle end on summit)

$$= 125 \text{ x C}^{2} / \text{R}$$

V2 (with vehicle centre on summit or vehicle end in sag)

 $= [125xC_1^2/R] - [125xC_2^2/R]$

b) Values of Vertical Throw V1 and V2 due to vertical curves of different radii are shown in drawing no. MPMRCL/GEN/SOD/GEN-02 at Page no. 45.

1.7.2 **Outside of Curve:**

A. Curvature effect:

a) End throw at the end of vehicle = V_o (in mm)

= $[125 \times C_1^2 / R] - [125 \times C_1^2 / R]$

- b) Clearance due to gauge widening on curves is 9 mm for curves sharper than 500 m radius and 5 mm for curves of radius between 500 m up to 1000 m.
- c) Additional clearance due to nosing, due to gauge widening to be considered for curves sharper than 1000 m radius.
- d) For values of curvature effect, refer to:
 - i) For At-Grade (Surface) Sections Ballasted Track refer Appendix 2A at Page no. 33 and Appendix 2B at Page no. 34.
 - For Underground, Elevated and At-Grade (Surface) Sections Ballastless Track refer Appendix – 2C at Page no. 35 and Appendix – 2D at Page no. 36.

B. Clearance for Cant:

a) <u>Underground (Box Structure), Elevated and At-Grade (Surface) Sections</u>

The lean 'L' due to Cant at any point at height 'h' above Rail Level is given by:

 $L = (-) C_a x h/G$ (all in mm), where G= 1435+c, c being the rail head width (negative sign indicates relief due to Cant or reduction in clearance required)

Values of cant effect on Structure Gauge on inside and outside of curve with only the cant effect as shown in drawing no. MPMRCL/GEN/SOD/GEN-01 at Page no. 44.

i) For Ballasted Track sections refer Appendix – 3A at Page no. 37.
- ii) For Elevated and At-Grade (Surface) sections (Ballastless Track) refer Appendix 3B at Page no. 38.
- iii) For Box structures of Underground sections (Ballastless Track) refer Appendix – 3C at Page no. 39.
- b) <u>Circular Tunnels</u>

In the case of Circular Tunnel, the cant is provided by raising the outer rail and suitably shifting the centre of the Circular Tunnel towards inside of curve and upwards. This has same effect as assuming rotation of the Circular Tunnel about mid-point of top of inner rail resulting in shift of Tunnel centre laterally towards inside of curve and also vertically upwards.

For values of horizontal and vertical shifts of centre of Circular Tunnel for different Values of cant, refer to Appendix - 4 at Page no. 42 and MPMRCL/GEN/SOD/UND-04 at Page no. 55.

C. Clearance for Vertical curve (Vertical Throw):

The provision at Para 1.7.1 (C) above shall be applicable in this case also.

a) Vertical Throw V1 and V2 (in mm) for vertical curve shall be calculated as under:

V1 (with vehicle centre in sag or vehicle end on summit) = $125 \times C^2/R$

V2 (with vehicle centre on summit or vehicle end in sag)

= $[125 \times C_1^2/R] - [125 \times C^2/R]$

b) Values of Vertical Throw V1 and V2 due to vertical curves of different radii are shown in drawing no. MPMRCL/GEN/SOD/GEN-02 at Page no. 45.

Abbreviations used in **Para 1.7 above**:

- **'C'** is the distance between centres of bogies in metres.
- 'C1' is the coach length in 'metres'
- 'R' is the radius of curve vertical or horizontal in metres

'Ca' is the Cant provided in 'mm'

'h' is the height from Rail Level in 'mm' and

'G' is the distance between centres of heads of rails in 'mm'. this value shall be taken as 1507 mm.

1.8 MINIMUM TRACK SPACING ON CURVES:

Underground, Elevated and At-Grade (Surface) Sections

The worst case will be when the end of a bogie carriage on the inner track is opposite the centre of a similar carriage on the outer track.

1.8.1 Without any structure between tracks:

The minimum track spacing on curves without any structure between tracks shall be the sum of the following:

a) (E+F)

Where, **E** is the horizontal distance from vertical axis of centre line of canted track to

canted Kinematic Envelope on inside of curve at a height 'h' (from Rail Level) for a given cant

F is the horizontal distance from vertical axis of centre line of canted track to canted Kinematic Envelope on outside of curve at a height 'h' (from Rail Level) for a given cant,

Refer Drawing no. MPMRCL/GEN/SOD/GEN-03 at Page no. 46.

- b) T1 (Extra lateral clearance due to curvature on Inside of curve)
- c) T2 (Extra lateral clearance due to curvature on Outside of curve)

Minimum clearance between adjacent Kinematic Envelopes is stipulated as below:

- i) 300 mm for Under-Ground Sections
- ii) 300 mm for Elevated Sections
- iii) 300 mm for Surface (At-Grade) sections

Notes:

- The value of 'F', calculated from the formula is at drawing no. MPMRCL/GEN/SOD/GEN-03 at Page no. 46 includes full relief due to Cant.
- ii) The sum of 'E' and "F' for same height (which are with cant effect only), shall be the maximum of values calculated for various heights from Rail Level.

For values of E, F, T1 and T2, refer to the Appendices as shown below.

Sr. no.	Sections	For E & F	For T1 & T2
1	Elevated, Underground & At- Grade (Ballastless)	Appendix 3E at Page no. 41	Appendix 2C at Page no. 35 Appendix 2D at Page no. 36
2	Surface (At-Grade) Ballasted Section	Appendix 3D at Page no. 40	Appendix 2A at Page no. 33 Appendix 2B at Page no. 34

1.8.2 With a Structure between adjacent tracks

The minimum track spacing on curves with a structure between tracks shall be the sum of the following:

- a) **(E1+T1)** Minimum clearance to the structure from centre line of track on inside of curve (for outer track)
- b) **(F1 + T2)** Minimum clearance to the structure from centre line of track on outside of curve (for inner track)
- c) Width of structure between adjacent tracks (measured across the tracks).

Where, **E1** is the horizontal distance from vertical axis of centre line of canted track to canted Structure Gauge on inside of curve for a given Cant,

F1 is the horizontal distance from vertical axis of centre line of canted track to canted Structure Gauge on outside of curve for a given Cant,

T1 is extra lateral allowance due to curvature on inside of curve.

T2 is extra lateral allowance due to curvature on outside of curve.

Notes:

- i. The values of E1 and F1 for a given Cant C_a, shall each be the maximum of values at different heights of structure from Rail Level. In case the cant provided is greater than 50mm on inner track, the value of F1 shall be for the cant of (C_a 50) mm. In case the cant provided is 50mm or less on inner track, the value of F1 shall be for ZERO Cant.
- ii. Minimum track spacing, so worked out with a structure between the adjacent tracks shall not be less than that calculated as per Para 1.8.1 for tracks without any structure between adjacent tracks.

Sr. no.	Sections	For E1 & F1	For T1 & T2
1	Underground Rectangular	Appendix 3C at	Appendix 2C at Page no. 35
	Box Tunnels (Ballastless)	Page no. 39	Appendix 2D at Page no. 36
2	Elevated & At-Grade	Appendix 3B at	Appendix 2C at Page no. 35
	(Ballastless)	Page no. 38	Appendix 2D at Page no. 36
3	Surface (At-Grade)	Appendix 3A at	Appendix 2A at Page no. 33
	Ballasted Section	Page no. 37	Appendix 2B at Page no. 34

For values of E1, F1, T1 and T2, refer to the Appendices as shown below.

1.9 WALKWAYS (UG section)

Minimum Width of Walkway	:	610 mm
Minimum Height of Walkway	:	1000 mm
Maximum Height of Walkway	:	1200 mm

Note: Extra clearance to walkway shall be provided for curves, as laid down at Para 1.7

- i) Walkway shall not infringe the Structure gauge.
- ii) Walkway should be used by Metro inspection and maintenance staff only during non-operation hours and for transfer of passengers during emergency evacuation.
- iii) Maximum and minimum heights of walkway on curves are above inner rail.
- iv) No structure, other than signalling and minor signalling telecom equipment post, shall be permitted within the minimum width of walkway.
- v) If tunnel provided with walkway on the same side of the platform is connecting two stations, one station having island platform and another station having a side platform, track crossing at rail level is to be provided to allow access from either of the stations to the walk way and vice versa. The track crossing shall not

infringe the Structure Gauge and shall be put to use only after train operation is stopped and traction power is switched off.

1.10 DERAILMENT GUARDS:

1.10.1 The derailment guard shall be provided outside in Viaduct and at grade sections. For UG section, the derailment guard shall be provided inside the track. For single track tunnel, location for providing derailment guard is given in note..

Note:

Location for providing Derailment Guard in single track tunnel;

- i) Entry of tunnel: 200 m from tunnel portal outside the tunnel to 50 m inside the tunnel.
- ii) Exit of tunnel: 50 m from inside of tunnel portal to 200 m outside the tunnel.
- iii) In curved track having radius of 500m or less including transition portion but excluding locations where check rail is provided.
- iv) Covering locations of all-important installations e.g. location of any substation or hazardous structures inside the tunnel, etc. damage to which in the assessment of metro rail administration can result into serious loss of life or and infrastructure as a result of derailment in tunnel.
- v) The above is subject to the condition that metro railway shall carry out the risk assessment analysis for derailment in tunnels and ensure that the maintenance practices in the maintenance manual are as per the risk assessment mitigation plan.
- 1.10.2 The lateral clearance between the running rail and the derailment guard shall be 210±30mm. It shall not be lower than 25 mm below the top of the running rail and should be clear of the rail fastenings to permit installation, replacement and maintenance.

Note:

In case of Double Resilient Base Plate Assembly fastening system as approved by Ministry of Railways (MoR), the lateral clearance between running rail and the derailment guard shall be 250±20 mm. This fastening system, if used in tunnel having multiple tracks, KE of adjacent tracks is not to be infringed so long as the Wheels of any derailed vehicles are within the main rail and the derailment guard.

- 1.10.3 Derailment guard shall be designed such that in case of derailment:
 - i) The Wheels of a derailed vehicle under crush load, moving at maximum speed are retained on the viaduct or tunnel.
 - ii) Damage to track and supporting structures is minimum.

2 CHAPTER - II: STATIONS

2.1 SPACING OF TRACKS AT STATIONS:

Minimum Spacing of tracks at station on straight and on curve of radius of 1000 m and flatter, without any structure between adjoining tracks for:

a)	Under Ground Section	:	3650 mm
b)	Elevated Section	:	3750 mm
c)	At-Grade Section (Ballasted Track)	:	3800 mm
d)	At-Grade Section (Ballastless Track)	:	3750 mm

2.2 PLATFORMS:

2.2.1 Minimum horizontal distance from centre of track to face of passenger Platform coping (ballastless track):

a)	Under Ground Station	: 1	515 mm	(A)
b)	Elevated Station/At-Grade	: 1	525 mm	

2.2.2 Maximum horizontal distance from centre of track to face of passenger Platform coping (ballastless track):

a)	Under Ground Station	:	1525 mm	(B)
b)	Elevated Station/At-Grade	:	1535 mm	

Notes:

- i) Platform faces shall be flared away smoothly from the centre line of the track at either end for a distance of 1500 mm so as to give from centre of track a dimension:
 - 1575 ± 5 for Under Ground and Elevated Stations.
 - 1590 ± 5 for Surface (At-Grade) Stations.
- ii) For additional clearance for platforms on curves, refer to Para 2.7.
- iii) Minimum and Maximum distances specified at Para 2.2.1 and 2.2.2 are for 2900 mm wide Rolling Stock. The distances (A) and (B) shall be adjusted with the variation in width of Rolling Stock.
- 2.2.3 Height above Rail Level for passenger platform on ballastless track:
 - a) Maximum height above Rail Level for Passenger platform : 1095 mm
 - b) Minimum height above Rail Level for Passenger platform : 1085 mm

Note: No station shall be proposed on ballasted track.

2.2.4 Horizontal distance

 a) Minimum horizontal distance of any 'isolated' structure on a passenger Platform from the edge of : 2500 mm coping with/without platform screen door/gate.

b) Minimum horizontal distance of any 'continuous'
 Structure on a passenger platform from the edge of : 350 coping with/without platform screen door/gate.

3500 mm

Note:

- The structure on the platform is treated as 'isolated' if the length of structure along the platform is 2000 mm or less. Any structure having a length exceeding 2000 mm is treated as 'continuous structure' except for platform screen doors and its supports.
- ii) The clocks/mirrors/ CCTV/ LED/LCD Screens/PIDS (passenger Information Display System) etc. shall not be considered structures and shall be located at a minimum horizontal distance of 1000 mm from platform edge/coping with minimum height of 2500 mm from top of platform. CCTV/LED/LCD, PIDS etc. suspended from the Roof of Station shall to be adequately secured and a safety loop is to be provided for taking care of incidences of failure of hanging arrangement.
- iii) No fixed structure should infringe the Structure Gauge except for designated railway operational structure. Designated railway operational structures include platform coping, platform gates, hand railing in back-of-house platform edge, track access gates. Such designated railway operational structures should not infringe the Kinematic Envelope under any circumstances.
- iv) The Platform Screen Gates/Doors (PSG/PSD) may be installed at platform as per design of Original Equipment Manufacturer (OEM) of PSG/PSD but shall have a minimum clearance of 10 mm from Kinematic Envelope.
- v) For platform structure setting-out dimension at stations, refer to;

Figure No: MPMRCL/GEN/SOD/ELE-03 at Page no. 56 and MPMRCL/GEN/SOD/ELE-05 at Page no. 58 for Elevated/At-Grade Stations with side platform without and with Platform Screen Gates respectively.

Figure No: MPMRCL/GEN/SOD/ELE-04 at Page no. 57 and MPMRCL/GEN/SOD/ELE-06 at Page no. 59 for Elevated/At-Grade Stations with Island platform without and with Platform Screen Gates respectively.

Figure No: MPMRCL/GEN/SOD/UND-05 at Page no. 60 and MPMRCL/GEN/SOD/UND-07 at Page no. 62 for Underground Stations with side platform without and with Platform Screen Doors respectively.

Figure No: MPMRCL/GEN/SOD/UND-06 at Page no. 61 and MPMRCL/GEN/SOD/UND-08 at Page no. 63 for Underground Stations with Island platform without and with Platform Screen Doors respectively.

- vi) There shall be no super elevation and gauge widening on passenger platform lines.
- 2.2.5 For Structure Gauge at stations, refer to Figures as under;

a)	For Elevated and At-Grade Stations (Side platform) with/without platform screen gate	Drawing no. MPMRCL/GEN/SOD/ELE-03 at Page no. 56 and ELE-05 at Page no. 58
b)	For Elevated and At-Grade Stations (Island platform) with/without platform screen gate.	Drawing no. MPMRCL/GEN/SOD/ELE-04 at Page no. 57 and ELE-06 at Page no.59
c)	For Underground Stations (Side platform) with/without platform screen door	Drawing no. MPMRCL/GEN/SOD/UND-05 at Page no. 60 and UND-07 at Page no. 62
d)	For Underground Stations (Island platform) with/without platform screen door	Drawing no. MPMRCL/GEN/SOD/UND-06 at Page no. 61 and UND-08 at Page no. 63

2.2.6 For Kinematic Envelope on platform at station, refer to:

MPMRCL/GEN/SOD/ELE&UND - 70 kmph at Page no. 50.

2.3 TRACK GRADIENTS IN PLATFORMS:

2.3.1 Track gradient in platform

a)	Maximum Gradient	:	1 in 1200
b)	Desirable	:	Level
c)	Exceptional Gradient	:	1 in 400

Note:

- 1. There shall be no change of grade in platform track.
- Any steeper gradient than 1 in 1200 and up to Exceptional gradient of 1 in 400 shall be proposed by the Civil Engineering Head and Approved by Managing Director in consultation with the Head of Safety Nominated by Metro Rail Authority.

2.4 INTERLOCKING AND SIGNAL GEAR:

Maximum height above Rail Level of any part of interlocking or signal gear on either side of centre of track falling within the structure gauge limits shall be as under, subject to the restrictions as per Note below:

a)	In Under Ground Stations	
	From centre of track to 1610 mm	0 mm
	Beyond 1610 mm from centre of track up to 1705 mm	250 mm
b)	In Elevated Stations	
	From centre of track up to 1610 mm	0 mm

	Beyond 1610 mm from centre of track up to 1755 mm	250 mm
c)	In At-Grade/ Surface Stations	
	From centre of track up to 1610 mm	0 mm
	Beyond 1610 mm from centre of track up to 1880 mm	250 mm

Note:

Except for check rails of ordinary and diamond crossings, upstands or wing rails and point rails of crossings leading to snag dead ends, or such parts of signalling gear as are required to be actuated by the Wheels, no gear or track fittings shall project above Rail Level for a distance of 1150 mm on either side of centre of the track.

2.5 **Points and Crossing:**

2.5.1	Maximum clearance of check rail opposite nose of crossing	:	42 mm
2.5.2	Minimum clearance of check rail opposite nose of crossings	:	36 mm
2.5.3	Maximum clearance of wing rail at nose of crossing	:	43 mm
2.5.4	Minimum clearance of wing rail at nose of crossings	:	41 mm
2.5.5	Minimum clearance between toe of open switch and stock rail	:	160 mm

2.5.6 On passenger lines, minimum radius of lead curve for slip points, turnouts and diamond crossings shall be of the following types.

a)	1 in 9 turnouts	:	190 m radius
b)	1 in 7 turnouts	:	140 m radius

- c) Scissors cross-over of 1 in 9 type consisting of 4 turnouts and 1 diamond crossing
- d) Scissors cross-over of 1 in 7 type consisting of 4 turnouts and 1 diamond crossing.
- 2.5.7 On Depot lines and other non-passenger lines the turnouts and diamond crossings shall be of the following types or flatter:

Minimum angle of crossing (ordinary):

- a) 1 in 7 type turnouts : 140 m radius
- b) Scissors cross-over of 1 in 7 type consisting of 4 turnouts and 1 diamond crossing
- c) 1 in 7 derailing switches : 140 m radius
- 2.5.8 Diamond crossings not to be flatter than 1 in 4.5

Note: The above restrictions shall not apply to moveable diamond crossings

2.5.9 Minimum length of tongue rail : 10,000 mm.

2.6 SUPER ELEVATION AND SPEED ON CURVES WITH TURNOUTS OF CONTRARY AND SIMILAR FLEXURE:

2.6.1 Main Line:

Subject to the permissible run through speed based on the standard of interlocking, the equilibrium super elevation, calculated for the speed of the fastest train may be reduced by a maximum amount of Cant Deficiency permitted without reducing speed on the main line.

2.6.2 Turnouts:

a) Curves of contrary flexure:

The equilibrium super elevation (s) in mm should be = { (1435 + c) / 127)} (V^2 / R)

Where, c = Rail head width, R = radius of turnout in metres and V is speed on turnout in kmph. The permissible negative super elevation on the turnout (which is also the actual super elevation of the main line) may then be = (Cant deficiency - 's') in mm.

b) Curves of Similar flexure:

The question of reduction or otherwise of super elevation on the main line in order to keep the cant deficiency on turnout track within limits for the speed permitted on turnout track must be determined by the administration concerned. In the case of a reverse curve close behind the crossing of a turnout, the super elevation may be run out at the maximum of 1 mm in 440 mm.

2.7 ADDITIONAL CLEARANCE FOR PLATFORMS ON CURVES:

The additional clearance for platforms on curves is to be provided as under:

On inside of curve : Mid Throw

On outside of curve : End Throw

The additional clearance for platforms on curves is shown in Appendix - 5 at Page no. 43.

Note:

- (i) As the minimum radius of horizontal curves for station passenger platforms line is 1000 metre, there will be no super elevation and gauge widening at stations on passenger platform lines.
- (ii) Platforms located in curve shall be fitted with a gap filler wherever necessary to maintain the Maximum stepping distance (between platform and car body floor) at platform as 75 mm in Horizontal direction and 50 mm in Vertical direction. The gap filler shall be of elastic nature and flexible to allow train contact without any adverse effect on passenger safety and stability of trains.

3.1.2

3 CHAPTER - III: ROLLING STOCK

3.1 PASSENGER ELECTRIC MULTIPLE UNITS:

3.1.1 Coach Dimensions:

a) Maximum Length	of Coach body (including end	fairings):	21965 mm
b) Maximum length over	er couplers	:	22600 mm
c) Maximum width of	the vehicle	:	2900 mm
d) Maximum Height c	of the Coach body	:	4080 mm
Distance between Bogie c	entres	:	14800 ± 200 mm
a) Length of rigid Whe	el base for single bogie.	:	2200 to 2600 mm
b) Maximum distance	e between any two adjacer	nt	
axles		:	12800 mm

- 3.1.3 Kinematic Envelope:
- 3.1.3.1 Kinematic Envelope for level tangent track except for passenger platform:
 - For underground ballastless track, refer drawing no. MPMRCL/GEN/SOD/UND-02 at Page no. 48.
 - For At- Grade & elevated sections, ballastless track, refer drawing no. MPMRCL/GEN/SOD/ELE-1 at Page no. 47.
- 3.1.3.2 Kinematic Envelope for level tangent track passenger platform (for Underground, At-Grade and Elevated sections, ballastless track) refer drawing no. MPMRCL/GEN/SOD/ELE&UND - 70 kmph at Page no. 50.
- 3.1.4 Net Minimum Clearance above Rail Level under dynamic condition of fully loaded vehicle under worst condition** for bogie and axle mounted equipment excluding Current Collection Device (CCD) and Obstacle Detection Device (ODD) after considering up to 25mm projection of Check rails, wing rails and upstand above Rail Level.

:50 mm *

Note:

* The Current Collection Device (CCD) in worst condition (with the deflection of primary springs and with maximum tread wear) in retracted position shall have a net minimum clearance of 25 mm above Rail Level.

** The 'worst condition' means that it is with maximum deflection of Primary suspension with Maximum tread wear.

3.1.5 Minimum Clearance above Rail Level under dynamic condition of fully loaded vehicle under worst condition*** for body mounted equipment.

: **102 mm**

*** The 'worst condition' means that it is with maximum deflection of Primary suspension, deflated air spring and maximum tread wear.

3.1.6	Whe	eel			
	a)	Maximum Wheel Gauge back	to back distance	:	1360 mm
	b)	Minimum Wheel Gauge back	to back distance	:	1358 mm
3.1.7					
	a)	Maximum diameter on the tread at 70 mm from the wheel gaug	d measured le face.:		860 mm
	b)	Minimum diameter on the tread at 70 mm from the Wheel Gau	d measured ge face. :		780 mm
3.1.8					
	a)	Minimum projection for flan Wheel measured from tread from the Wheel Gauge face.	ge of new at 70 mm	:	28 mm
	b)	Maximum projection for flan Wheel measured from tread from the Wheel Gauge face.	ge of worn at 70 mm	:	36 mm
3.1.9					
	a)	Maximum thickness of flange measured from Wheel Gauge mm from outer edge of flange	of Wheel a face at 18 a.	:	32.5 mm
	b)	Minimum thickness of flange measured from Wheel Gauge mm from outer edge of flange	of Wheel face at 18 e.	:	22 mm
3.1.10	Wid	th of Wheel		:	135 ± 1 mm
3.1.11	Inc	line of tread	: UIC 510-2/EN13715/15313(profile accepted international	(or lly)	any other
3.1.12	Floc	or Height			
	a)	Maximum Height of floor above for an unloaded vehicle.	Rail Level,	:	1130 mm
	b)	Minimum Height of floor above for a fully loaded normal vehicl	Rail Level, e.	:	1100 mm
3.1.13					
	a)	Maximum Height of coupler Level, for an unloaded vehicle.	above Rail	:	815 mm
	b)	Minimum Height of coupler Level, for a loaded vehicle.	above Rail	:	740 mm

3.2 LOCOMOTIVES AND ENGINEERING SERVICE VEHICLES

Other items of rolling stock, viz. shunting locomotives, inspection cars, emergency rerailing van, track machines, etc., used on this Metro System (running lines) will conform at their maximum operational speed with the Kinematic Envelope of the Passenger Electric Multiple Units as shown in:

For Underground refer drawing no. MPMRCL/GEN/SOD/UND-02 at Page no. 48.

For At-Grade and elevated sections refer drawing no. MPMRCL/GEN/SOD/ELE-01 at Page no. 47.

For Surface (At-Grade) sections for ballasted track refer drawing no. MPMRCL/GEN/SOD/ATG - 01 at Page no. 49.

4 CHAPTER - IV: ELECTRIC TRACTION

4.1 Electric Traction - 750 V DC Third Rail with bottom current collection:

4.1.1 Electrical Clearances for At-grade, Elevated and Underground section:

	a)	Minimum height from Rail Level to current collecting surface of the Conductor rail.	: 148 mm
	b)	Maximum height from Rail Level to current collecting surface of the Conductor rail including worn-out condition.	:164 mm
4.1.2			
	a)	Distance of centre line of the Conductor rail from the track centre	: 1445 - 1490 mm (Designed value +/- 5 mm)
4.1.3	Mini the Rail	mum clearance between the bottom of shroud and the bottom of the Conductor .	: 19 mm
4.1.4	Max the shro	timum distance between the centre line of Conductor Rail and the outer edge of the bud structure.	: 91 mm
4.1.5	a) M thir dyna	linimum clearance between live parts of d rail and the structure in static and amic conditions.	: 25 mm
	b) M Con	linimum clearance between live parts of ductor Rail and vehicle body.	: 25 mm

5 CHAPTER – V: PLATFORM SCREEN DOORS / GATES

5.1 Platform Screen Doors and Gates setting out:

5.1.1	Mini	mum I	Platform Screen Door width	:	2000 mm
5.1.2	Mini	mum I	Platform Screen Door height from Platform level	:	2150 mm
5.1.3	Mini	mum I	Platform Screen Gate height from Platform level	:	1500 mm
5.1.4					
	a)	Mini	mum Platform Screen Door/Gate panel offset from tangen	t tra	ack
		cent	re line	:	1600 mm
	b)	Minii	mum Platform Screen Door/Gate threshold offset from trac	ck c	centre line
		i)	Underground station	:	1555 mm
		II)	Elevated Station/At-Grade	:	1570 mm
5.1.5	Stati	on Pla	atform (Finished Floor Level) height from Rail Level		
	Balla	astless	s Track	:	1090 ± 5 mm
	Note	e:			

- i) Assumed +/- 300 mm Stopping accuracy
- ii) Platform Screen Doors at station on curves shall be considered separately taking into account the additional clearance as per Appendix-5.
- iii) Platform screen doors are considered as designated railway operational structures. Therefore, Platform Screen Doors may infringe the structure gauge, but does not infringe the kinematic envelope over platform line and having minimum clearance of 10 mm from Kinematic Envelope to Platform Screen Door.
- iv) The deflector (if provided) attached to the bottom of the sliding door shall be designed in order not to protrude beyond the door threshold.
- 5.1.6 For static and Kinematic Envelope for station in Underground section with Platform Screen Door, refer Drawing no. MPMRCL/GEN/SOD/PSD 01 at Page no. 64.
- 5.1.7 For Static and Kinematic Envelope for Elevated and At-grade stations with Platform Screen Gate, refer Drawing no. MPMRCL/GEN/SOD/PSD 02 at Page no. 65.

		ŀ	APPENDIX -1		
PER	MISSIBLE S	PEED, CAN	T AND MINIMUM SP		
BALLA SE(CTIONS ANI	D BALLAST	ED TRACK ON AT-	GRADE SECT	TONS
		(REFE	RENCE PARA 1.1)		
			Minimum distanc	e between ad	acent tracks
Radius	•	Max	Ballastle	ess	Ballasted
of Curve	Cant	Perm Speed	Underground	Elevated & At-Grade	At-Grade
m	mm	kmph	mm	mm	mm
≥ 3000	15	80	3700	3800	3850
2800	15	80	3700	3800	3850
2600	15	80	3700	3800	3850
2400	20	80	3700	3800	3850
2200	20	80	3700	3800	3850
2000	20	80	3700	3800	3850
1900	20	80	3700	3800	3850
1800	25	80	3700	3800	3850
1700	20	80	3700	3000	3000
1500	20	80	3700	3800	3850
1400	30	80	3700	3800	3850
1300	30	80	3700	3800	3850
1200	35	80	3700	3800	3850
1100	35	80	3700	3800	3850
1000	40	80	3700	3800	3850
950	40	80	3700	3800	3850
900	45	80	3700	3800	3850
850	45	80	3700	3800	3850
800	55	80	3700	3800	3850
750	55	80	3700	3800	3850
700	55	80	3700	3800	3850
650	85	80	3700	3800	3850
600	85	80	3700	3800	3850
550	85	80	3750	3800	3850
500	85	80	3750	3850	3900
450	95	80	3750	3900	3950
400	105	80	3800	3900	3950
350	125	80	3800	3900	3950
300	125	75	3850	3950	4000
250	125	65	3900	4000	4050
200	125	60	3950	4050	4100
175	125	55	NA	4100	4150
150	125	50	NA	4150	4150
120	125	45	NA	4150	4150
100	125	40	NA	4250	4250

Notes:

1. The track spacing shown in the table above is without any column/structure between two tracks and is with equal cant both for outer and inner tracks.

2. The table above is not applicable to Platform tracks.

3. Figure for any intermediate readius of curvature may be obtained by adopting the value for sharper curve.

			APPEND	IX -2A	
	EXTRA	HORIZONTAL CLE AT-GRADE (SURF/ (REFEREN	ARANCE OF ACE) SECTI INSIDE OF ICE PARAS 1	N CURVES (CU ONS (BALLAS) CURVE 1.7.1A., 1.8.1 & 1	RVATURE EFFECT) TED TRACK) 1.8.2)
Radius R	Mid throw 28125/R	Nosing Included in KE/Structure Gauge for Tangent Track N	Gauge Widening on curves G	Extra Horizontal Clearance	Remarks
				T1	
m	mm	mm	mm	mm	
3000	9.4	32	0	0	GAUGE WIDENING ON CURVES:
2800	10.0	32	0	0	is 9 mm for Curves sharper than
2600	10.8	32	0	0	500m radius.
2400	11.7	32	0	0	is 5 mm for Curves of radius from
2200	12.8	32	0	0	500m to 1000m and
2000	14.1	32	0	0	is 0 mm for Curves with radius
1900	14.8	32	0	0	1000m and above.
1800	15.6	32	0	0	
1700	16.5	32	0	0	
1600	17.6	32	0	0	
1500	18.8	32	0	0	
1400	20.1	32	0	0	
1300	21.6	32	0	0	
1200	23.4	32	0	0	
1100	25.6	32	0	0	
1000	28.1	32	0	0	T1 = V-N+G For V' equal to or
950	29.6	32	5	3	greater than ' N'
900	31.3	32	5	4	
850	33.1	32	5	6	I1 = G for V < N
800	35.2	32	5	8	
750	37.5	32	5	11	
700	40.2	32	5	13	
650	43.3	32	5	16	
600	46.9	32	5	20	
550	51.1	32	5	24	
500	56.3	32	5	29	
450	62.5	32	9	40	
400	70.3	32	9	47	
350	80.4	32	9	57	
300	93.8	32	9	71	
250	112.5	32	9	90	
200	140.6	32	9	118	
175	160.7	32	9	138	- I
150	187.5	32	9	165	- I
120	234.4	32	9	211	4
100	281.3	32	9	258	<u> </u>
Mid throw	v (in mm) V =	125 C2 / R = 28125 /	K	45000	OD 14900 200 14000 mm
The work		with C = 15000 mm	= 14800	J+∠UU = 15000 mn	1 UR 14800-200 = 14600 MM
		with $C = 10000$ mm			
r is the r	adius of curve	e in metres			

			APPENDI	X -2B									
	EXTR	RAHORIZON	TAL CLEARANCE ON	I CURVES (CURVA	TURE EFFECT)								
		AT GRADE	E (SURFACE) SECTION	ONS (BALLASTED	TRACK)								
			OUTSIDE OF	CURVE									
		(R	EFERENCE PARAs 1	.7.1A., 1.8.1 & 1.8.2)								
Radius	End throw,	Gauge Widening on	Nosing due to Gauge	Extra Horizontal	Remarks								
APPENDIX -28 EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GROBE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE (REFERENCE PARAS 1.7.1A., 1.8.1.8.2) Radiue End throw, Gauge Mosing due to Gauge Kitra Horizontal ocurves, EN Remarks No Mosing due to Gauge Kitra Horizontal ocurves, EN Remarks R Mo 0.0 11 3000 11.3 0 0.0 11 2800 12.2 0 0.0 14 2000 17.0 0 0.0 13 2400 14.2 0 0.0 14 2000 17.0 0 0.0 13 2400 14.2 0 0.0 15 1700 26.3 0 0.0 23 CRAUSE SCHONTAL 1700 26.3 0 0.0 24 CURVES Schon radus 1700 26.4 0 0.0 24 CURVES Schon radus 1700 26.4 0 0.0 24 CURVES <													
	34020 / R	G	= Gx0.219723183	$T2 = V_0 + G + EN$									
R													
m	mm	mm	mm	mm									
3000	11.3	0	0.0	11									
2800	12.2	0	0.0	12									
2600	13.1	0	0.0	13									
2400	14.2	0	0.0	14	-								
APPENDIX -28 EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GRADE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE (REFERENCE PARAS 1.7.1A, 1.8.1 & 1.8.2) Radius End throw, Gauge Nosing due to Gauge Extra Horizontal or curves, EN Remarks 34020 / R G G Remarks Clearance, Cleara													
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$													
APPENDIX -2B EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GRADE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE (REFERENCE PARAS 1.7.1A, 1.8.1.8.1.8.2) Radius End throw, Gauge Nosing due to Gauge Extra Horizontal curves, EN Remarks 34020 / R G G Remarks Nosing due to Gauge Extra Horizontal curves, EN Remarks Maining due to Gauge Extra Horizontal curves, EN Remarks Guige Willening on curves, EN Clearance, Clearance, Clearance, Curves, Curve, Curv													
1700	20.0	0	0.0	20	-								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$													
1300	APPENDIX -2B EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GRADE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE CURVE (REFERENCE PARAs 1.7.1.1., 1.8.1 & 1.8.2) Radius End throw, VQ Widening on curves, SUBO 12.2 Remarks CURVE Remarks CURVE Clearance, SUBO 11.3 Remarks T2 = V ₀ +G-EN Remarks Mosing due to Gauge subo 11.3 Curves 200 Curves SUBO 11.2 Curves Curves Remarks T2 = V ₀ +G-EN T2 = V ₀ +G-EN T2 = V ₀ +G-EN T2 = 0 0.0 T0 0 Curves Curves Curves Curves Curves Curves Curves Curves Curves												
1200	APPENDIX -28 EXTRAHORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GRADE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE CIENCE PARAS 1.7.1A. 1.8.1 & 18.2 Remarks Remarks Colspan="2">Colspan="2">Remarks See Ind throw, V0 Gauge Widening on EN Clearance, EN Remarks Internet Miden Mi												
1100	30.9	APPENDIX -2B XTRAHORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GRADE (SURFACE) SECTIONS (BALASTED TRACK) OUTSIDE OF CURVE (REFERENCE PARAS 1.7.14, 1.8.18.1.8.2) OW of Gauge Noting due to Gauge Extra Horizontal regression of the colspan="2">Remarks Remarks Reference PARAS 1.7.14, 1.8.18.1.8.2) OW of Gauge Noting due to Gauge Extra Horizontal Clearance, curves, extra Horizontal 0 Remarks Midentia Mark 1.8.18.2 Midentia Mark 1.8.18.20 Midentia Mark 1.8.18.20 Remarks mm mm mm and mm Remarks GAUGE WIDENING ON O.0.0 CURVES: CURVES: 0.0.0.0 CURVES: CURVES: 0.0.0.0 0.0.0.0 23 OUT 0.00 CURVES: 0.0.0.0 0.0.0.0 24 Is form for Curves sharper than 5.00m radius. 0.0.0.0 24 0.0.0.0 24 0.0.0.0 24 0.0.0.0 24 0.0.0.0 24											
1000	34.0	APPENDIX -28 XTRAHORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GRADE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE (REFERENCE PARAS 1.7.1A, 1.8.1.8.1.8.2) OW joint of the colspan="2">Comparing on curves, colspan="2">Remarks Notice of Gauge Extra Horizonta Clearance, colspan="2">Clearance, colspan="2"Clearance, colspan="2">Clearance, colspan="2"Clearance,											
950	35.8	APPENDIX -2B TRA HORIZONT AL CLEARANCE ON CURVES (CURVATURE EFFECT) A GRADE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE (REFERENCE PARAs 1.7.1A, 1.8.1 8.1.8.2) with colspan="2">with colspan="2">Remarks (REFERENCE PARAs 1.7.1A, 1.8.1 8.1.8.2) with colspan="2">with colspan="2">Remarks Clearance, curves, a Remarks 0 0.0 11 0 0.0 11 0 0.0 12 0 0.0 14 0 0.0 14 0 0.0 20 0 0.0 21 GAUGE WIDENING ON CURVES: 0 0.0 23 CURVES: 0 0.0 24 Is 9mm for Curves sharper tha 500m radius. 0 0.0 24 Is 0mm for Curves with radius 0 0.0 24 Is 0mm for Curves with radius 0 0.0 24 Is 0mm for Curves with radius 0 0.0 24 Is 0mm for Curves with radius 0 0.0 2.0 144 <t< td=""></t<>											
900	37.8	5	1.1	APPENDIX -2B CLEARANCE ON CURVES (CURVATURE EFF RFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE RENCE PARAS 1.7.1A., 1.8.1 & 1.8.2) og due to Gauge widening, EN Extra Horizontal Clearance, EN mm mm 0.0 11 0.0 12 0.0 13 0.0 13 0.0 14 0.0 13 0.0 13 0.0 14 0.0 13 0.0 13 0.0 13 0.0 23 CURVES: 0.0 0.0 24 is 9mm for 0.0 28 is 5mm for 0.0 31 500m to 10 0.0 34 1.1 44 1.1 44 1.1 55 1.1 55 1.1 68 1.1 74									
800	40.0	5	1.1	40	-								
750	45.4	5	1.1	51	-								
700	48.6	5	1.1	55									
650	52.3	5	1.1	58									
600	56.7	APPENDIX -2B EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GRADE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE CURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE (REFERENCE PARAS 1.7.1A, 1.8.1 & 1.8.2) throw, Gauge widening on curves, G Remain from the class of the class											
550	APPENDIX -28 EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GRADE (SURFACE) SECTIONS (BALASTED TRACK) OUTSIDE OF CURVE (REFERENCE PARAS 1.71A, 1.8.1 & 1.8.2) Interpretation of the state o												
500	APPENDIX -28 EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GRADE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE (REFERENCE PARAS 1.7.1A, 1.8.1.8.2) dius End throw, Vo Widening, Curves, B Remarks Adv20 / R Generation of the to Gauge widening, curves, B Carta Horizonta, Clearance, EN Remarks m mm Remarks Moting due to Gauge widening, curves, B GAUGE WIDENING ON 11.3 00.0 11 300 Colspan="2">GAUGE WIDENING ON 12.3 GAUGE WIDENING ON 22.0 CURVES: BOT 7.0 COLSPAN CURVES: BOT 7.0 COLSPAN 300 2.4 O CURVES: BOT 7.0 CURVES: BOT 7.0 CURVES: BOT 7.0 CURVES: BOT 7.0 CURVES: BOT 7.0 CURVES: BOT 7.0 CURVES: BOT 7.0 CURVES: BOT 7.0 CURVES: BOT 7.0 CURV												
APPENDIX -28 EXTRA HORIZONTAL CLEARANCE ON CURVES (CURVATURE EFFECT) AT GRADE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE (REFERENCE PARAS 1.7.1A, 1.8.1.8.1.8.2) Radius End throw, Gauge Nosing due to Gauge Kira Horizontal curves, EN Remarks 30020 / R Remarks Nosing due to Gauge Nosing due to Gauge Vietname, EN Clearance, EN Nosing due to Gauge Nosing due to Gauge Strat Horizontal Clearance, EN Remarks Main mm Remarks Main mm Remarks 3000 11.3 0 0.0 11 2800 12.2 0 0.0 12 2800 13.1 0 0.0 11 2800 15.5 0 0.0 12 1800 15.8 0 0.0 24 1400 24.3 0 0.0 24 Is Omm for Cures sharper the 500m radius. Is 500m to 1000m and above. 1300 28.4 0 0.0 24 Is Omm for Cures with radius 1000m and above. 9800 </td													
All GRADE (SURFACE) SECTIONS (BALLASTED TRACK) OUTSIDE OF CURVE Radius End twow, videning, curves, suge Nosing due to Gauge widening, ENT Extra Horizontal Clearance, T2 = V ₀ +G+EN m mm mm mm mm mm mm 3000 11.3 0 0.0 11 2800 13.1 0 0.0 13 2400 14.2 0 0.0 13 2400 14.2 0 0.0 14 1900 17.9 0 0.0 18 1900 17.9 0 0.0 20 1900 21.3 0 0.0 24 1900 24.3 0 0.0 24 1900 26.2 0 0.0 24 10 1200 28.4 0 0.0 24 100 1200 28.4 0 0.0 24 100 1200 28.4 0 0.0 34 100m and above. 1200 28.4 5 <													
350	97.2	9	2.0	108	-								
250	136.1	9	2.0	124	-								
200	170.1	9	2.0	181	-								
175	194.4	9	2.0	205	1								
150	226.8	9	2.0	238									
120	283.5	9	2.0	294									
100	340.2	9	2.0	351									
F 1.1	<i>.</i>	(105.042)/ D	(405 02) / D	0.4000 / D	<u> </u>								
End throw	w (in mm) V_0	= (125 C1 ²)/ R	- (125x C ²) / R;	= 34020 / R									
					4 4000 000 4 4000								
Where (is the dista	ance between be	ogies centers = 14800	+200 = 15000mm OR	14800-200 = 14600 mm								
$\begin{array}{ $													
'C1' is the	e length of co	each in metres =	22.030 m and R is the ra	adius of curve in metre	s								
СОАСНИ	ENGTH		- 21900 mm										
FOR DM		CREASE TO	= 21965 mm										
DIFFERE	ENCE IN LEN	IGTH	= 65 mm: (THIS I	NCREASE WILL BE C	ON ONE SIDE FOR DRIVING CAB)								
			```		, ,								
HALF LE	NGTH FROM	I CENTRE OF T	WO BOGIES	= ((21900	0 / 2)+65) = 11015 mm								
R         curves         FN         T2 = V_0+G+EN           m         mm         mm         mm         mm           3000         11.3         0         0.0         11           2200         12.2         0         0.0         12           2800         13.1         0         0.0         14           2200         15.5         0         0.0         15           2000         17.0         0         0.0         18           1800         18.9         0         0.0         21           1900         22.7         0         0.0         24           1900         28.2         0         0.0         24           1900         28.4         0         0.0         24           1000         34.9         0         0.0         31           1000         36.8         5         1.1         42           900         37.8         5         1.1         42           900         37.8         5         1.1         46           800         42.6         5         1.1         46           600         55         1.1         55													
(2 x HAL	F LENGTH F	ROM CENTRE	OF 2 BOGIES)										



т	EXTRA UNNEL/EL	HORIZONTAL CLEA EVATED/AT-GRADI	ARANCE ON ( E (SURFACE) INSIDE OF C	CURVES (CU SECTIONS URVE	JRVATURE EFFECT) (BALLASTLESS TRACK)
Radius	Mid throw	(REFERENC Nosing Included in KE/Structure Gauge	CE PARAs 1.7 Gauge Widening on	.1A., 1.8.1 & Extra Horizontal	1.8.2)
_	00405/5	for Tangent Track	curves	Clearance	Remarks
R	28125/R	N	G	11	
<u>m</u>	mm	mm	mm		GAUGE WIDENING ON CURVES:
3000	9.4	28	0	0	Is 9mm for Curves sharper than 500m
2800	10.0	28	0	0	radius.
2600	10.8	28	0	0	Is 5mm for Curves of radius from
2400	11.7	28	0	0	is 0mm for Curron with radius 1000m
2200	12.8	28	0	0	and above
2000	14.1	28	0	0	
1900	14.8	28	0	0	4
1800	15.6	28	0	0	4
1700	16.5	28	0	0	4
1600	17.6	28	0	0	4
1500	18.8	28	0	0	-
1400	20.1	28	0	0	4
1300	21.6	28	0	0	4
1200	23.4	28	0	0	T1 - V NuG For W oqual to or
1100	25.6	28	0	0	$11 = \sqrt{-10+6}$ For $\sqrt{-6}$ equal to or
1000	28.1	28	0	0	
950	29.6	28	5	7	
900	31.3	28	5	8	-
850	33.1	28	5	10	-
800	35.2	28	5	12	4
750	37.5	28	5	15	-
700	40.2	28	5	17	4
650	43.3	28	5	20	4
600	46.9	28	5	24	4
550	51.1	28	5	28	4
500	56.3	28	5	33	4
450	62.5	28	9	44	4
400	70.3	28	9	51	4
350	80.4	28	9	61	4
300	93.8	28	9	75	4
250	112.5	28	9	94	4
200	140.6	28	9	122	-
175	160.7	28	9	142	4
100	10/.5	28	9	169	4
120	234.4	28	9	215	4
100	201.3	28	9	202	
Vid throw	(in mm) V = 1 ' is the distan	25 C ² / R = 28125 / R	tres = 14800+2	00 = 15000 mm	a = 14800-200 = 14600  mm



			APPENDIX -2	D	
	EXTRAHO	RIZONTAL CL	EARANCE ON CU	JRVES (CURVAT	URE EFFECT)
Т	UNNEL/ELEV	ATED/AT-GR/	DE (SURFACE) S	ECTIONS (BALL	ASTLESS TRACK)
		/ <b></b>	OUTSIDE OF CL	JRVE	
		(REFERE	NCE PARAs 1.7.1	A., 1.8.1 & 1.8.2)	
Radius,	End throw,	Gauge	Nosing due to	Extra Horizontal	
		Widening on	Gauge widening,	Clearance,	Remarks
	0.4000 / D	curves,	EN =		
R m	34020 / R mm	mm	GXU.219723183 mm	12 = V0+G+EN mm	
3000	11.3	0	0.0	11	-
2800	12.2	0	0.0	12	-
2600	13.1	0	0.0	13	
2400	14.2	0	0.0	14	
2200	15.5	0	0.0	15	
2000	17.0	0	0.0	17	-
1900	17.9	0	0.0	18	-
1800	18.9	0	0.0	19	-
1600	20.0	0	0.0	20	GAUGE WIDENING ON
1500	21.3	0	0.0	23	CURVES:
1400	24.3	0	0.0	24	is 9mm for Curves sharper than
1300	26.2	0	0.0	26	500m radius.
1200	28.4	0	0.0	28	is 5mm for Curves of radius
1100	30.9	0	0.0	31	from 500m to 1000m and
1000	34.0	0	0.0	34	is 0mm for Curves with radius
950	35.8	5	1.1	42	1000m and above.
900	37.8	5	1.1	44	-
850	40.0	5	1.1	46	-
800 750	42.5	5	1.1	49	-
700	45.4	5	1.1	55	-
650	52.3	5	1.1	58	-
600	56.7	5	1.1	63	-
550	61.9	5	1.1	68	
500	68.0	5	1.1	74	
450	75.6	9	2.0	87	
400	85.1	9	2.0	96	-
350	97.2	9	2.0	108	-
300	113.4	9	2.0	124	-
250	136.1	9	2.0	147	-
175	194.4	9	2.0	205	-
150	226.8	9	2.0	238	-
120	283.5	9	2.0	294	-
100	340.2	9	2.0	351	
End throw (i	n mm) V0 = (125	C1 ² )/R-(125	$x C^2$ ) / R; =	34020 / R	
Where ' C ' i	is the distance be	etween bogies ce	entres = 14800+200	) = 15000mm or 148	800-200 = 14600 mm
The worst ca	ase will with C =	14600 mm			
'C1' is the le	ength of coach in	metres = 22.030	m and R is the radius	s of curve in metres	
COACULE			21000		
		E TO	= 21900 mm		
	T CAN INCREAS	= 10 =			
		=			ONE ODE I ON DIVING CAD)
HALF LENG	TH FROM CENT	RE OF TWO BO	GIES	= ((21900 /	2)+65) = 11015 mm
LENGTH FC	OR CALCULATIO	N OF END THRO	W	= 22030 mr	n ,
(2 x HALF L	ENGTH FROM C	ENTRE OF 2 BO	DGIES)		



													A	PPEND	DIX - 3.	A												
											C		FFECT				GAUGE	E										
																			n)		700 -							
					<b></b>	ĸ	EFEREI		AWING	NUMBE		KCL/GEI	N/SOD/A	1G-02 o		L/GEN/	SOD/GEI		PARAS	I.7.ID., I.	1.2 в. а	na 1.8.2						
Height	above r	ailleve	moseu	rod												All ligu	ires in m	m										
above	nernenc	licular f	otrack	nlane		90	1			20	32			33	56			39	37			40	58			43	59	
'h' =	perpend	lioului i	o traon	plane										00								40				400		
Distar	ce from	centre	line of t	rack																								
to Stru	icture G	auge fo	r tangen	nt		176	65			18	13			18	35			14	43			13	74			136	6	
track	'ab'=	-	_																									
Cant	angle α in	Sin α	Cos α	Tan α	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2
mm	radians																										, i	
125	0.08	3 0.083	0.997	0.083	1833.7	1684.2	1106.8	814.0	1975.3	1638.2	2237.9	1937.1	2107.0	1550.3	3559.1	3254.7	1764.6	1111.5	4105.6	3866.2	1705.9	1032.7	4220.5	3992.5	1722.9	999.7	4519.8	4293.2
120	0.08	0.080	0.997	0.080	1831.1	1687.7	1098.7	817.6	1969.0	1645.4	2229.9	1941.2	2096.4	1561.9	3551.5	3259.2	1751.9	1124.9	4099.4	3869.6	1692.8	1046.5	4214.5	3995.7	1708.8	1014.6	4513.9	4296.4
115	0.07	6 0.076	0.997	0.077	1828.6	1691.1	1090.6	821.2	1962.8	1652.7	2221.9	1945.2	2085.7	1573.6	3543.7	3263.7	1739.2	1138.4	4093.1	3872.9	1679.7	1060.3	4208.5	3998.8	1694.7	1029.4	4508.0	4299.5
110	0.073	3 0.073	0.997	0.073	1826.1	1694.5	1082.4	824.8	1956.5	1659.8	2213.9	1949.2	2075.1	1585.1	3536.0	3268.1	1726.5	1151.8	4086.8	3876.2	1666.5	1074.1	4202.5	4001.9	1680.5	1044.2	4502.1	4302.7
105	0.070		0.998	0.070	1823.5	1697.9	1074.3	828.3	1950.2	1667.0	2205.9	1953.2	2064.4	1596.7	3528.2	3272.5	1713.8	1165.2	4080.5	3879.4	1653.4	1087.9	4196.4	4004.9	1652.2	1059.0	4496.1	4305.7
95	0.06	3 0.063	0.998	0.007	1818.3	1701.3	1058.0	835.4	1943.0	1681.3	2197.0	1957.2	2033.0	1619.8	3512.5	3281 1	1688.3	1101 0	4074.1	3885.7	1627.1	1115.5	4190.2	4007.9	1638.1	1073.7	4490.0	4300.7
90	0.06	0.060	0.998	0.060	1815.7	1704.0	1030.0	839.0	1931.1	1688.4	2181.6	1965.1	2032.1	1631.3	3504.6	3285.4	1675.5	1205.3	4061.2	3888.8	1613.9	1129.2	4177.8	4013.7	1623.9	1103.2	4477.8	4314.6
85	0.05	6 0.056	0.998	0.056	1813.0	1711.4	1041.6	842.5	1924.7	1695.5	2173.5	1969.0	2021.4	1642.8	3496.7	3289.7	1662.8	1218.6	4054.6	3891.8	1600.7	1142.9	4171.5	4016.5	1609.7	1118.0	4471.6	4317.5
80	0.053	3 0.053	0.999	0.053	1810.3	1714.7	1033.4	846.0	1918.3	1702.6	2165.4	1972.9	2010.6	1654.3	3488.7	3293.9	1650.0	1232.0	4048.1	3894.8	1587.5	1156.6	4165.2	4019.3	1595.5	1132.7	4465.4	4320.3
75	0.050	0.050	0.999	0.050	1807.7	1718.0	1025.2	849.5	1911.9	1709.6	2157.2	1976.8	1999.7	1665.7	3480.7	3298.0	1637.1	1245.3	4041.4	3897.8	1574.3	1170.3	4158.9	4022.1	1581.2	1147.4	4459.1	4323.1
70	0.040	6 0.046	0.999	0.047	1804.9	1721.2	1017.0	853.0	1905.4	1716.7	2149.0	1980.6	1988.9	1677.1	3472.6	3302.1	1624.3	1258.6	4034.8	3900.7	1561.0	1184.0	4152.4	4024.8	1567.0	1162.1	4452.7	4325.8
65	0.043	3 0.043	0.999	0.043	1802.2	1724.5	1008.8	856.5	1899.0	1723.7	2140.8	1984.4	1978.0	1688.5	3464.5	3306.2	1611.5	1271.8	4028.1	3903.6	1547.8	1197.7	4146.0	4027.5	1552.7	1176.7	4446.4	4328.5
60	0.040	0.040	0.999	0.040	1799.5	1727.7	1000.6	860.0	1892.5	1730.7	2132.6	1988.2	1967.2	1699.9	3456.4	3310.3	1598.6	1285.1	4021.3	3906.4	1534.5	1211.3	4139.5	4030.1	1538.5	1191.4	4439.9	4331.2
55	0.03	7 0.036	0.999	0.037	1796.7	1730.9	992.3	863.5	1886.0	1737.6	2124.3	1992.0	1956.3	1711.3	3448.2	3314.3	1585.7	1298.4	4014.5	3909.2	1521.2	1225.0	4132.9	4032.7	1524.2	1206.0	4433.4	4333.7
50	0.03	3 0.033	0.999	0.033	1793.9	1734.1	984.1	866.9	1879.4	1744.6	2116.0	1995.7	1945.3	1722.6	3440.0	3318.3	1572.8	1311.6	4007.7	3912.0	1507.9	1238.6	4126.4	4035.2	1509.9	1220.6	4426.9	4336.3
45	0.03	0.030	1.000	0.030	1791.1	1/3/.3	975.8	870.4	1872.9	1751.5	2107.7	1999.5	1934.4	1734.0	3431.8	3322.2	1559.9	1324.8	4000.8	3914.7	1494.6	1252.2	4119.7	4037.7	1495.6	1235.2	4420.3	4338.8
40	0.02		1.000	0.027	1700.3	1740.5	967.5	073.0	1000.3	1756.4	2099.4	2003.2	1923.4	1745.3	3423.3	3320.1	1547.0	1338.0	3993.9	3917.3	1481.2	1200.8	4113.0	4040.1	1481.2	1249.8	4413.7	4341.2
30	0.02	0.023	1.000	0.023	1782.6	1743.0	959.2	880.7	1853.1	1705.3	2091.1	2000.0	1912.4	1750.0	3415.2	3330.0	1521.1	1364.3	3907.0	3919.9	1467.9	1279.4	4100.3	4042.5	1400.9	1204.4	4407.0	4343.0
25	0.02	7 0.020	1.000	0.020	1779.7	1740.7	942.7	884 1	1846 5	1779.0	2002.7	2010.3	1890.4	1707.0	3398.5	3337.6	1508.1	1377.5	3973.3	3925.0	1434.3	1206.5	4099.0	4044.0	1438.1	1293.5	4393.6	4348.2
20	0.01:	3 0.013	1.000	0.013	1776.8	1752.9	934.3	887.5	1839.8	1785.9	2065.9	2017 8	1879.4	1790.3	3390 1	3341.4	1495.1	1390.6	3965.8	3927.5	1427 7	1320.0	4085.9	40494	1423.7	1308.0	4386 7	4350.5
15	0.01	0.010	1.000	0.010	1773.9	1755.9	926.0	890.9	1833.1	1792.7	2057.4	2021.4	1868.3	1801.5	3381.6	3345.1	1482.1	1403.7	3958.7	3929.9	1414.3	1333.5	4079.0	4051.6	1409.3	1322.5	4379.9	4352.7
10	0.00	7 0.007	1.000	0.007	1770.9	1759.0	917.7	894.3	1826.4	1799.5	2049.0	2024.9	1857.2	1812.7	3373.1	3348.7	1469.1	1416.8	3951.5	3932.3	1400.9	1347.0	4072.0	4053.8	1394.9	1337.0	4373.0	4354.8
5	0.00	3 0.003	1.000	0.003	1768.0	1762.0	909.4	897.6	1819.7	1806.2	2040.5	2028.5	1846.1	1823.9	3364.6	3352.4	1456.1	1429.9	3944.3	3934.7	1387.5	1360.5	4065.0	4055.9	1380.5	1351.5	4366.0	4356.9
0	0.00	0.000	1.000	0.000	1765.0	1765.0	901.0	901.0	1813.0	1813.0	2032.0	2032.0	1835.0	1835.0	3356.0	3356.0	1443.0	1443.0	3937.0	3937.0	1374.0	1374.0	4058.0	4058.0	1366.0	1366.0	4359.0	4359.0

E1 = [ Ab + (h x tan α )] x cos α

F1 = [ ab - (h x tan α )] x cos α

 $H1 = (C_a/2) + (h/\cos \alpha) + (Ab-hx \tan \alpha) x \sin \alpha$ 

 $H2 = (C_a / 2) + (h/\cos \alpha) - (Ab + h x \tan \alpha) x \sin \alpha$ 

ab = Ab = Distance from inclined centre line of vehicle to Structure Gauge for tangent track at height 'h' from rail level in the direction parallel to the line joining the top of rails.

ac = Distance from niclined centre line of canted track to Structure Gauge for tangent track at height 'h' from rail level in the direction parallel to the line joining the top of rails.



														APPE	NDIX - 3E	3												
												CA	NT EFF	ECT ON	STRUC	TURE G	AUGE											
										ELI	EVATED	& AT-G	RADE (S	SURFACE	E) SECT	IONS (B	ALLASTI	LESS TR	RACK)									
								REF	ERENCE D	RAWING	NUMBER	MPMRCL	GEN/SOL	)/ELE - 02 a	& MPMRCL	./GEN/SOD	)/GEN - 01	AND PAR	As 1.7.1B.,	1.7.2 B. an	d 1.8.2							
					All figures	in mm																						
Height above	above ra	ail level rack pla	measu ane 'h'	red =	348				879				2873				3338				4058				4350			
Distan	ce from	centre I	ine of t	rack																								
to Stru	icture Ga	uge for	tangei	nt	1730				1736				1808				1808				1374				1366			
track	ab'=						1	1	-		1	1		1	1	1		1	1 1			1			<b></b>			
Cant mm	in	Sin a	Cos α	Tan α	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1 J	H2
####	1adians	0.083	0 007	0.1	1752.0	1605.2	552.8	265.8	1802.0	1657 1	1082.5	70/ 5	2040.1	1563.5	3075.6	2775.6	2078.6	1524.0	3530.0	3230.0	1705.0	1032.7	1220.5	3002.5	1722.1	1000 5	4510.8	1281 2
####	0.080	0.080	0.997	0.1	1752.2	1696.8	544.7	269.1	1800.5	1660.5	1074.4	798.0	2040.1	1503.5	3067.8	2779.9	2068.1	1536.5	3531.4	3243.4	1692.8	1032.7	4214.5	3995.7	1708.0	1015.3	4505.0	4287.4
####	0.076	0.076	0.997	0.1	1751.5	1698.4	536.5	272.5	1798.0	1663.9	1066.4	801.5	2022.0	1583.5	3060.1	2784.2	2057.5	1548.0	3523.7	3247.8	1679.7	1060.3	4208.5	3998.8	1694.0	1030.1	4499.1	4290.6
####	0.073	0.073	0.997	0.1	1750.8	1700.0	528.3	275.8	1795.5	1667.2	1058.4	804.9	2012.9	1593.5	3052.3	2788.4	2046.8	1559.5	3516.1	3252.1	1666.5	1074.1	4202.5	4001.9	1679.9	1044.8	4493.1	4293.7
####	0.070	0.070	0.998	0.1	1750.0	1701.5	520.2	279.1	1793.0	1670.5	1050.3	808.4	2003.8	1603.4	3044.5	2792.5	2036.2	1571.0	3508.4	3256.4	1653.4	1087.9	4196.4	4004.9	1665.8	1059.6	4487.1	4296.8
####	0.066	0.066	0.998	0.1	1749.3	1703.1	512.0	282.4	1790.5	1673.8	1042.3	811.9	1994.7	1613.4	3036.6	2796.7	2025.5	1582.5	3500.6	3260.7	1640.2	1101.7	4190.2	4007.9	1651.6	1074.3	4481.1	4299.8
####	0.063	0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000 <th< td=""><td>1034.2</td><td>815.3</td><td>1985.5</td><td>1623.3</td><td>3028.8</td><td>2800.8</td><td>2014.8</td><td>1594.0</td><td>3492.8</td><td>3264.9</td><td>1627.1</td><td>1115.5</td><td>4184.0</td><td>4010.8</td><td>1637.5</td><td>1089.1</td><td>4475.0</td><td>4302.7</td></th<>									1034.2	815.3	1985.5	1623.3	3028.8	2800.8	2014.8	1594.0	3492.8	3264.9	1627.1	1115.5	4184.0	4010.8	1637.5	1089.1	4475.0	4302.7
####	0.060	0.060	0.998	0.1	1747.7	1706.1	495.7	289.1	1785.4	1680.4	1026.1	818.8	1976.4	1633.2	3020.8	2804.9	2004.1	1605.4	3485.0	3269.1	1613.9	1129.2	4177.8	4013.7	1623.3	1103.8	4468.8	4305.7
####	0.056	0.056	0.998	0.1	1746.9	1707.6	487.5	292.4	1782.8	1683.7	1018.0	822.2	1967.2	1643.1	3012.9	2808.9	1993.4	1616.8	3477.2	3273.2	1600.7	1142.9	41/1.5	4016.5	1609.2	1118.5	4462.6	4308.5
####	0.053	0.053	0.999	0.1	1740.0	1709.1	479.3	295.7	1700.2	1600.9	1009.9	820.0	1956.0	1662.9	2006.0	2013.0	1902.7	1620.3	3469.3	3211.3	1507.3	1120.0	4105.2	4019.3	1595.0	11/7 8	4430.4	4311.4
#####	0.030	0.030	0.999	0.0	1743.2	1712.0	463.0	302.3	1775.0	1693.3	993.7	832.4	1940.7	1672.6	2988.9	2820.9	1961.1	1651.0	3453.4	3285.4	1561.0	1184.0	4152.4	4022.1	1566.6	1162.5	4443.8	4316.9
####	0.043	0.043	0.999	0.0	1743.4	1712.0	454.8	305.6	1772.3	1696.5	985.6	835.8	1930.2	1682.4	2980.8	2824.8	1950.3	1662.3	3445.4	3289.4	1547.8	1197.7	4146.0	4027.5	1552.4	1177.1	4437.4	4319.5
####	0.040	0.040	0.999	0.0	1742.5	1714.8	446.6	308.8	1769.6	1699.6	977.4	839.2	1921.0	1692.2	2972.7	2828.7	1939.5	1673.7	3437.3	3293.4	1534.5	1211.3	4139.5	4030.1	1538.1	1191.7	4430.9	4322.2
####	0.037	0.036	0.999	0.0	1741.5	1716.1	438.4	312.1	1766.9	1702.8	969.3	842.6	1911.6	1701.9	2964.6	2832.6	1928.6	1685.0	3429.3	3297.3	1521.2	1225.0	4132.9	4032.7	1523.8	1206.3	4424.5	4324.7
####	0.033	0.033	0.999	0.0	1740.6	1717.5	430.2	315.4	1764.2	1705.9	961.1	845.9	1902.3	1711.7	2956.4	2836.4	1917.8	1696.3	3421.1	3301.2	1507.9	1238.6	4126.4	4035.2	1509.6	1220.9	4417.9	4327.3
####	0.030	0.030	1.000	0.0	1739.6	1718.8	422.0	318.7	1761.5	1709.0	952.9	849.3	1893.0	1721.4	2948.2	2840.2	1906.9	1707.5	3413.0	3305.0	1494.6	1252.2	4119.7	4037.7	1495.3	1235.5	4411.3	4329.8
####	0.027	0.027	1.000	0.0	1738.6	1720.2	413.8	322.0	1758.7	1712.1	944.8	852.6	1883.6	1731.1	2940.0	2844.0	1896.0	1718.8	3404.8	3308.8	1481.2	1265.8	4113.0	4040.1	1481.0	1250.1	4404.7	4332.2
####	0.023	0.023	1.000	0.0	1737.6	1721.5	405.6	325.2	1755.9	1715.1	936.6	855.9	1874.2	1740.8	2931.7	2847.7	1885.0	1730.0	3396.6	3312.6	1467.9	1279.4	4106.3	4042.5	1466.7	1264.6	4398.1	4334.6
####	0.020	0.020	1.000	0.0	1736.6	1722.7	397.4	328.5	1753.2	1718.2	928.4	859.3	1864.8	1750.4	2923.4	2851.4	1874.1	1741.2	3388.3	3316.3	1454.5	1292.9	4099.5	4044.8	1452.3	1279.1	4391.3	4336.9
####	0.017	0.017	017 1.000 0.0 1735.5 1724.0 389.2 331.8 1750.3								920.2	862.6	1855.4	1/60.1	2915.1	2855.1	1863.1	1/52.4	3380.0	3320.0	1441.1	1306.5	4092.7	4047.1	1438.0	1293.6	4384.6	4339.2
####	0.013	0.013	0.013 1.000 0.0 1734.5 1725.2 380.9 335.0 1747.5 1724.2								912.0	860.9	1840.0	1709.7	2906.7	2858.8	1852.1	1703.5	33/1./	3323.7	1427.7	1320.0	4085.9	4049.4	1423.0	1308.1	43/7.7	4341.5
####	0.010	0.010	1.000 0.0 1733.4 1720.5 372.7 338.3 1744.7 1727.2 St 1.000 0.0 1732.3 1727.7 364.5 341.5 1741.8 1730.1 80								903.7	872.5	1830.0	1779.3	2898.4	2865.0	1841.1	17785.8	3303.3	3327.3	1414.3	1333.5	4079.0	4051.0	1409.2	1322.0	4370.9	4343.7
5 000	0.007	0.007	1 000	0.0	1731.1	1728.8	356.2	344.8	1738.0	1733.1	887 3	875.7	1817 5	1798.5	2881 5	2869.5	1810.1	1796.9	3346.5	3334 5	1387.5	1360.5	4065.0	4055.0	1380.4	1351.6	4357.0	4347.0
0.000	0.000	0.000	1.000	0.0	1730.0	1730.0	348.0	348.0	1736.0	1736.0	879.0	879.0	1808 0	1808.0	2873.0	2873.0	1808.0	1808.0	3338.0	3338.0	1374.0	1374.0	4058.0	4058.0	1366.0	1366.0	4350.0	4350.0
		,		2.0			2.510	2.510			2. 510	2. 5.0																
E1=[a	ab + (h x t	anα)] x	cos α					•								•									<u> </u>		I	
F1 = [	ab-(hxta	anα)]x	cos α																									
H1 = (	Ca / 2) +(	h/cos α	) + (Ab-	h x tan	α) x sin α																							

H2 = (Ca / 2) +(h/cos  $\alpha$ ) - (Ab+h x tan  $\alpha$ ) x sin  $\alpha$ 

ab = Ab = Distance from inclined centre line of vehicle to Structure Gauge for tangent track at height 'h' from rail level in the direction parallel to the line joining the top of rails.

ac = Distance from niclined centre line of canted track to Structure Gauge for tangent track at height 'h' from rail level in the direction parallel to the line joining the top of rails.



	APPENDIX - 3C																											
												CANT	EFFEC		TRCTU		UGE											
								U	NDERG	KOUN	DSECT	ION (R		GULA	BOX	IUNNE	LS) - B/	ALLAST	LESS I	RACK								
					1		REFE	RENCE		IG NUMBI	R: MPM	RCL/GEN	N/SOD/UN	ID-03 & N	IPMRCL/0	JEN/SOD	/GEN-01	and par	As 1.7.1E	В., 1.7.2 В	. and 1.8.2	2						
																All figure	es in mm											
Heigh	t above ra	il level r	neasure	ed		34	8			88	5			28	84			33	20			42	46			4:	300	
above	perp to tr	ack pla	ne 'h' =				-				-																	
Distar	ice from c	entre li	ne of tra	ck to										. –														
Struct	ure Gauge	e for tar	ngent			168	0			167	76			17	29			17:	29			10	40			8	33	
track'	ab'=		r				1			1																		
Cant mm	angle 'α' in radians	Sin α	Cos α	Tan α	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2	E1	F1	H1	H2
125	0.083	0.083	0.997	0.083	1703.1	1645.3	548.7	270.0	1743.6	1596.8	1083.5	805.4	1962.3	1483.8	3080.0	2793.1	1998.4	1447.7	3514.5	3227.6	1388.6	684.2	4380.1	4207.6	1186.8	473.5	4416.8	4278.6
120	0.080	0.080	0.997	0.080	1702.4	1647.0	540.7	273.1	1741.1	1600.2	1075.6	808.7	1953.2	1493.9	3072.5	2797.2	1987.9	1459.1	3507.1	3231.8	1374.8	698.6	4375.3	4209.7	1172.8	488.0	4412.7	4280.0
115	0.076	0.076	0.997	0.077	1701.7	1648.5	532.7	276.3	1738.6	1603.6	1067.8	812.0	1944.0	1503.9	3065.0	2801.1	1977.3	1470.6	3499.8	3235.9	1361.0	713.0	4370.5	4211.8	1158.7	502.4	4408.5	4281.4
110	0.073	0.073	0.997	0.073	1700.9	1650.1	524.7	279.4	1736.1	1606.9	1060.0	815.3	1934.9	1513.9	3057.5	2805.1	1966.7	1482.1	3492.3	3239.9	1347.2	727.3	4365.6	4213.8	1144.6	516.9	4404.3	4282.7
105	0.070	0.070	0.998	0.070	1700.2	1651.7	516.7	282.6	1733.6	1610.3	1052.1	818.6	1925.7	1523.9	3050.0	2809.0	1956.1	1493.5	3484.9	3244.0	1333.3	741.6	4360.6	4215.7	1130.6	531.4	4400.1	4284.0
100	0.066	0.066	0.998	0.067	1699.4	1653.2	508.7	285.8	1731.0	1613.6	1044.3	821.8	1916.6	1533.8	3042.4	2812.9	1945.5	1504.9	3477.4	3248.0	1319.5	756.0	4355.7	4217.6	1116.5	545.8	4395.8	4285.2
95	0.063	0.063	0.998	0.063	1698.6	1654.7	500.7	288.9	1728.5	1616.9	1036.4	825.1	1907.4	1543.8	3034.8	2816.8	1934.9	1516.3	3469.9	3251.9	1305.6	770.3	4350.6	4219.5	1102.4	560.3	4391.5	4286.4
90	0.060	0.060	0.998	0.060	1697.8	1656.2	492.7	292.0	1725.9	1620.2	1028.5	828.3	1898.2	1553.7	3027.1	2820.6	1924.2	1527.6	3462.3	3255.8	1291.7	784.6	4345.5	4221.3	1088.3	574.7	4387.1	4287.6
85	0.056	0.056	0.998	0.056	1697.0	1657.7	484.7	295.2	1723.2	1623.4	1020.6	831.6	1888.9	1563.6	3019.4	2824.4	1913.5	1539.0	3454.7	3259.7	1277.8	798.9	4340.4	4223.1	1074.2	589.1	4382.6	4288.7
80	0.053	0.053	0.999	0.053	1696.1	1659.2	476.7	298.3	1720.6	1626.7	1012.7	834.8	1879.7	1573.5	3011.7	2828.1	1902.8	1550.3	3447.1	3263.5	1263.9	813.1	4335.2	4224.8	1060.1	603.6	4378.2	4289.7
75	0.050	0.050	0.999	0.050	1695.2	1660.6	468.7	301.5	1718.0	1629.9	1004.8	838.0	1870.4	1583.3	3004.0	2831.9	1892.1	1561.6	3439.4	3267.3	1250.0	827.4	4330.0	4226.5	1046.0	618.0	4373.6	4290.7
70	0.046	0.046	0.999	0.047	1694.4	1662.0	460.7	304.6	1715.3	1633.1	996.9	841.2	1861.1	1593.2	2996.2	2835.6	1881.3	1572.9	3431.7	3271.1	1236.1	841.7	4324.7	4228.1	1031.8	632.4	4369.1	4291.7
65	0.043	0.043	0.999	0.043	1693.4	1663.4	452.6	307.7	1712.6	1636.3	989.0	844.4	1851.8	1603.0	2988.4	2839.2	1870.6	1584.2	3424.0	3274.8	1222.2	855.9	4319.4	4229.7	1017.7	646.8	4364.4	4292.6
60	0.040	0.040	0.999	0.040	1692.5	1664.8	444.6	310.8	1709.9	1639.4	981.0	847.6	1842.5	1612.8	2980.6	2842.9	1859.8	1595.4	3416.2	3278.5	1208.2	870.1	4314.0	4231.2	1003.5	661.1	4359.8	4293.4
55	0.037	0.036	0.999	0.037	1691.6	1666.2	436.6	314.0	1707.2	1642.6	973.1	850.7	1833.1	1622.6	2972.7	2846.5	1849.0	1606.7	3408.4	3282.2	1194.3	884.3	4308.6	4232.7	989.4	675.5	4355.0	4294.2
50	0.033	0.033	0.999	0.033	1690.6	1667.5	428.5	317.1	1704.4	1645.7	965.1	853.9	1823.7	1632.4	2964.8	2850.0	1838.2	1617.9	3400.5	3285.8	1180.3	898.6	4303.2	4234.2	975.2	689.9	4350.3	4295.0
45	0.030	0.030	1.000	0.030	1689.6	1668.9	420.5	320.2	1701.7	1648.8	957.2	857.1	1814.3	1642.1	2956.8	2853.6	1827.4	1629.1	3392.6	3289.4	1166.3	912.7	4297.7	4235.6	961.0	/04.2	4345.5	4295.7
40	0.027	0.027	1.000	0.027	1688.6	1670.2	412.5	323.3	1698.9	1651.9	949.2	860.2	1804.9	1651.8	2948.9	2857.1	1816.5	1640.3	3384.7	3292.9	1152.3	926.9	4292.1	4236.9	946.8	/18.6	4340.6	4296.4
35	0.023	0.023	1.000	0.023	1687.6	16/1.5	404.4	326.4	1696.1	1655.0	941.2	863.3	1795.5	1661.6	2940.9	2860.6	1805.6	1651.4	3376.8	3296.4	1138.3	941.1	4286.5	4238.2	932.6	732.9	4335.7	4297.0
30	0.020	0.020	1.000	0.020	1686.6	16/2.7	396.4	329.5	1693.3	1658.1	933.2	866.5	1/86.1	16/1.2	2932.8	2864.0	1794.7	1662.6	3368.8	3299.9	1124.3	955.3	4280.9	4239.5	918.4	701.2	4330.7	4297.6
25	0.017	0.017	1.000	0.017	1685.5	1674.0	388.3	332.6	1690.5	1661.1	925.2	869.6	1/76.6	1680.9	2924.8	2867.4	1/83.8	1673.7	3360.7	3303.4	1110.3	969.4	4275.2	4240.7	904.2	761.6	4325.7	4298.1
20	0.013	0.013	1.000	0.013	1684.5	16/5.2	380.3	335.7	1687.6	1664.1	917.2	8/2.7	1/6/.1	1690.6	2916.7	2870.8	1772.9	1684.8	3352.7	3306.8	1096.3	983.6	4269.4	4241.8	890.0	115.9	4320.7	4298.6
15	0.010	0.010	1.000	0.010	1683.4	16/6.5	372.2	338.8	1684.7	1667.1	909.1	8/5.8	1/5/.6	1700.2	2908.6	2874.1	1/62.0	1695.9	3344.5	3310.1	1082.2	997.7	4263.6	4242.9	8/5.8	790.2	4315.6	4299.0
10	0.007	0.007	1.000	0.007	1682.3	16//.7	364.1	341.8	1681.8	16/0.1	901.1	878.9	1/48.1	1709.8	2900.4	28//.5	1/51.0	1706.9	3336.4	3313.5	1068.2	1011.8	4257.8	4244.0	861.5	804.4	4310.4	4299.4
5	0.003	0.003	1.000	0.003	1681.1	1678.8	356.1	344.9	1678.9	16/3.1	893.1	881.9	1/38.6	1/19.4	2892.2	2880.7	1740.0	1/18.0	3328.2	3316.7	1054.1	1025.9	4251.9	4245.0	847.3	818.7	4305.2	4299.7
0	0.000	0.000	1.000	0.000	1680.0	1680.0	348.0	348.0	1676.0	1676.0	885.0	885.0	1729.0	1729.0	2884.0	2884.0	1729.0	1729.0	3320.0	3320.0	1040.0	1040.0	4246.0	4246.0	833.0	833.0	4300.0	4300.0

E1=  $[ab + (h x \tan \alpha)] x \cos \alpha$ 

F1 = [ab - (h x tan α)] x cos α

H1 =  $(Ca / 2) + (h/\cos \alpha) + (Ab - h x \tan \alpha) x \sin \alpha$ 

H2 = (Ca / 2) + (h/cos  $\alpha$ ) - (Ab+h x tan  $\alpha$ ) x sin  $\alpha$ 

ab = Ab = Distance from inclined centre line of vehicle to Structure Gauge for tangent track at height 'h' from rail level in the direction parallel to the line joining the top of rails.

ac = Distance from niclined centre line of canted track to Structure Gauge for tangent track at height 'h' from rail level in the direction parallel to the line joining the top of rails.



	APPENDIX - 3D																											
											T EFFE	CT ON	I KINE	MATIC SECT	ENVEI ION (B	LOPE - ALLAS		ZONTA RACK)	NL.									
								REFER	ENCE D	RAWING		R: MPM	RCL/GEI	N/SOD/A	TG-01 &	MPMRC	L/GEN/S	OD/GEN	I-01 AND	PARA 1	.8.1							
																All figure	es in mm	<u>ו בי גווי</u> און	017112									
Heigh above	leight above rail level measured 907				2036			3311			3826			4014				4209										
Dista Kinen track	iance from centre line of track to ematic Envelope for tangent				1663			1684			1337			1225				1220										
Cant mm	angle 'α' in radians	Sin α	Cos α	Tan α	E	F	H1	H2	E	F	H1	H2	Ш	F	H1	H2	E	F	H1	H2	E	F	H1	H2	Е	F	H1	H2
125	0.083	0.083	0.997	0.083	1684.7	1534.2	1100.3	832.4	1826.1	1488.4	2229.4	1953.5	1952.8	1403.6	3501.8	3222.4	1649.7	1015.0	3986.2	3764.4	1553.7	887.8	4164.3	3961.1	1564.9	866.7	4358.2	4155.8
120	0.080	0.080	0.997	0.080	1682.1	1537.6	1092.7	835.5	1819.8	1495.6	2222.0	1957.1	1942.3	1415.0	3494.6	3226.4	1637.4	1028.1	3980.3	3767.4	1540.7	901.5	4158.8	3963.7	1551.3	881.0	4352.8	4158.5
115	0.076	0.076	0.997	0.077	1679.5	1541.1	1085.1	838.6	1813.5	1502.8	2214.5	1960.7	1931.8	1426.4	3487.4	3230.3	1625.1	1041.1	3974.4	3770.3	1527.7	915.1	4153.3	3966.3	1537.6	895.3	4347.3	4161.1
110	0.073	0.073	0.997	0.073	1676.9	1544.5	1077.5	841.7	1807.2	1510.0	2207.0	1964.2	1921.2	1437.8	3480.1	3234.2	1612.7	1054.2	3968.4	3773.2	1514.7	928.7	4147.7	3968.9	1524.0	909.5	4341.8	4163.7
105	0.070	0.070	0.998	0.070	1674.3	1547.9	1069.8	844.8	1800.8	1517.1	2199.4	1967.7	1910.6	1449.2	3472.8	3238.1	1600.3	1067.2	3962.4	3776.0	1501.7	942.3	4142.1	3971.4	1510.3	923.8	4336.3	4166.3
100	0.066	0.066	0.998	0.067	1671.6	1551.3	1062.2	847.8	1794.4	1524.2	2191.9	1971.2	1900.0	1460.6	3465.4	3242.0	1587.9	1080.2	3956.3	3778.8	1488.7	955.9	4136.4	3973.9	1496.6	938.0	4330.7	4168.8
95	0.063	0.063	0.998	0.063	1669.0	1554.6	1054.5	850.9	1788.0	1531.3	2184.3	1974.6	1889.4	1471.9	3458.1	3245.8	1575.5	1093.2	3950.2	3781.6	1475.6	969.5	4130.7	3976.3	1482.9	952.2	4325.0	4171.2
90	0.060	0.060	0.998	0.060	1662.6	1558.0	1046.8	853.9	1781.0	1538.4	21/0./	1978.0	18/8./	1483.3	3450.7	3249.5	1563.1	1106.1	3944.0	3784.3	1462.5	983.1	4125.0	3978.7	1469.2	966.5	4319.3	4173.6
80	0.050	0.050	0.990	0.050	1660.0	1564.6	1039.1	860.0	1768.7	1552.6	2109.1	1901.3	1857 /	1494.0	3443.2	3256.0	1538.2	1132.0	3937.0	3780.6	1449.5	990.0	4113.2	3083 3	1433.3	900.7	4313.0	4170.0
75	0.050	0.050	0.999	0.050	1658.1	1567.9	1023.8	863.0	1762.3	1559.6	2153.7	1988.2	1846.7	1517.1	3428.2	3260.6	1525.8	1144.9	3925.3	3792.2	1423.2	1023.7	4107.5	3985.6	1428.0	1009.0	4302.0	4180.6
70	0.046	0.046	0.999	0.047	1655.4	1571.1	1016.0	866.0	1755.8	1566.6	2146.0	1991.6	1836.0	1528.4	3420.6	3264.2	1513.3	1157.8	3919.0	3794.8	1410.1	1020.7	4101.6	3987.8	1414.2	1023.2	4296.1	4182.8
65	0.043	0.043	0.999	0.043	1652.6	1574.4	1008.3	869.0	1749.3	1573.6	2138.3	1994.9	1825.2	1539.6	3413.1	3267.8	1500.8	1170.7	3912.6	3797.3	1397.0	1050.7	4095.6	3989.9	1400.4	1037.3	4290.2	4185.0
60	0.040	0.040	0.999	0.040	1649.8	1577.6	1000.6	872.0	1742.7	1580.6	2130.6	1998.2	1814.5	1550.8	3405.4	3271.3	1488.3	1183.6	3906.2	3799.7	1383.8	1064.2	4089.6	3992.0	1386.6	1051.5	4284.2	4187.1
55	0.037	0.036	0.999	0.037	1647.0	1580.8	992.8	875.0	1736.2	1587.6	2122.8	2001.5	1803.7	1562.0	3397.8	3274.8	1475.7	1196.5	3899.7	3802.2	1370.7	1077.7	4083.5	3994.1	1372.8	1065.6	4278.2	4189.2
50	0.033	0.033	0.999	0.033	1644.2	1584.0	985.1	877.9	1729.6	1594.5	2115.1	2004.7	1792.9	1573.2	3390.0	3278.3	1463.2	1209.3	3893.3	3804.5	1357.5	1091.1	4077.4	3996.1	1359.0	1079.7	4272.2	4191.2
45	0.030	0.030	1.000	0.030	1641.4	1587.2	977.3	880.9	1723.1	1601.5	2107.3	2007.9	1782.1	1584.4	3382.3	3281.7	1450.7	1222.2	3886.7	3806.9	1344.3	1104.6	4071.3	3998.1	1345.1	1093.8	4266.1	4193.2
40	0.027	0.027	1.000	0.027	1638.5	1590.4	969.5	883.8	1716.5	1608.4	2099.4	2011.1	1771.3	1595.5	3374.5	3285.1	1438.1	1235.0	3880.1	3809.2	1331.1	1118.0	4065.1	4000.1	1331.3	1107.9	4259.9	4195.1
35	0.023	0.023	1.000	0.023	1635.6	1593.5	961.8	886.7	1709.8	1615.3	2091.6	2014.3	1760.4	1606.6	3366.7	3288.5	1425.5	1247.8	3873.5	3811.4	1317.9	1131.4	4058.9	4002.0	1317.4	1121.9	4253.7	4197.0
30	0.020	0.020	1.000	0.020	1632.7	1596.6	954.0	889.7	1703.2	1622.1	2083.7	2017.5	1749.6	1617.8	3358.9	3291.8	1412.9	1260.6	3866.9	3813.6	1304.7	1144.9	4052.6	4003.8	1303.5	1136.0	4247.5	4198.9
25	0.017	0.017	1.000	0.017	1629.8	1599.7	946.2	892.6	1696.5	1629.0	2075.8	2020.6	1738.7	1628.8	3351.0	3295.1	1400.3	1273.3	3860.2	3815.8	1291.4	1158.2	4046.3	4005.6	1289.7	1150.0	4241.2	4200.7
20	0.013	0.013	1.000	0.013	1626.9	1602.8	938.4	895.5	1689.9	1635.8	2067.9	2023.8	1727.8	1639.9	3343.1	3298.4	1387.7	1286.1	3853.4	3817.9	1278.2	1171.6	4039.9	4007.4	1275.8	1164.0	4234.8	4202.4
15	0.010	0.010	1.000	0.010	1623.9	1605.9	930.5	898.4	1683.2	1642.7	2060.0	2026.8	1716.9	1651.0	3335.1	3301.6	1375.0	1298.9	3846.6	3820.0	1264.9	1185.0	4033.5	4009.1	1261.8	1178.0	4228.4	4204.1
10	0.007	0.007	1.000	0.007	1621.0	1608.9	922.7	901.3	1676.5	1649.5	2052.0	2029.9	1705.9	1662.0	3327.1	3304.8	1362.4	1311.6	3839.8	3822.0	1251.6	1198.3	4027.0	4010.8	1247.9	1192.0	4222.0	4205.8
5	0.003	0.003	1.000	0.003	1618.0	1612.0	914.9	904.1	1669.7	1656.2	2044.0	2033.0	1695.0	1673.0	3319.1	3307.9	1349.7	1324.3	3832.9	3824.0	1238.3	1211.7	4020.5	4012.4	1234.0	1206.0	4215.5	4207.4
0	0.000	0.000	1.000	0.000	1015.0	0.6101	907.0	907.0	1003.0	1003.0	2030.0	2030.0	1004.0	1004.0	5311.0	3311.0	1337.0	1337.0	3820.0	3820.0	1225.0	1225.0	4014.0	4014.0	1220.0	1220.0	4209.0	4209.0

E1= [ ab + (h x tan α )] x cos α

F1 = [ ab - (h x tan α )] x cos α

H1 = (Ca / 2) +(h/cos  $\alpha$ ) + (Ab-h x tan  $\alpha$ ) x sin  $\alpha$ 

H2 =  $(Ca / 2) + (h/cos \alpha) - (Ab+h x tan \alpha) x sin \alpha$ 

ab = Ab = Distance from inclined centre line of vehicle to Structure Gauge for tangent track at height 'h' from rail level in the direction parallel to the line joining the top of rails.

ac = Distance from niclined centre line of canted track to Structure Gauge for tangent track at height 'h' from rail level in the direction parallel to the line joining the top of rails.



													AP	PEND	X - 3E													
											CAN		FCTO		ΕΜΔΤΙ													
							FU	EVATE		DERGE			AT-GR	ADE (S				- RAII	ΔSTI	ESS TI	RACK							
								REFER							1 F-01 &	MPMRC				PARA 1	8.1							
											NOMBL	All figures in mm																
loiah	tabove	ail lovo	Imosei	red												Air liguit	<i>3</i> III IIII											
bove	e perp to	track n	lane 'h'	=		34	8			89	95			28	76			32	96			40	14			42	00	
Dista	nce from	centre	line of	track to																								
Ginen	natic Env	elope f	or tange	ent		145	51			15	86			16	58			16	58			12	25			12	20	
rack	'ab'=		<b>J</b>																									
Cont	angle 'o	('																										
- ani mm	in	Sin c	a Cos c	Tan α	E	F	H1	H2	Е	F	H1	H2	E	F	H1	H2	E	F	H1	H2	E	F	H1	H2	E	F	H1	H2
	radian	5																										
125	0.08	3 0.08	3 0.997	0.083	1474.9	1417.1	529.7	288.9	1654.8	1506.3	1086.0	822.9	1890.8	1413.7	3066.1	2791.1	1925.7	1378.9	3484.7	3209.6	1553.7	887.8	4164.3	3961.1	1564.2	867.4	4349.2	4146.8
120	0.08	0.08	0 0.997	0.080	1474.1	1418.7	522.4	291.4	1652.2	1509.7	1078.4	825.9	1881.7	1423.7	3058.9	2794.8	1915.2	1390.3	3477.6	3213.5	1540.7	901.5	4158.8	3963.7	1550.6	881.7	4343.8	4149.5
115	0.07	6 0.07	6 0.997	0.077	1473.3	1420.2	515.2	293.8	1649.7	1513.1	1070.9	828.9	1872.6	1433.7	3051.6	2798.6	1904.7	1401.6	3470.4	3217.4	1527.7	915.1	4153.3	3966.3	1536.9	895.9	4338.4	4152.2
110	0.07	3 0.07	3 0.997	0.073	1472.5	1421.7	508.0	296.2	1647.1	1516.4	1063.4	831.8	1863.5	1443.7	3044.4	2802.3	1894.2	1413.0	3463.2	3221.2	1514.7	928.7	4147.7	3968.9	1523.3	910.2	4332.8	4154.7
105	0.07	0 0.07	0 0.998	8 0.070	1471.7	1423.2	500.8	298.6	1644.5	1519.8	1055.8	834.8	1854.4	1453.6	3037.0	2806.0	1883.6	1424.3	3456.0	3225.0	1501.7	942.3	4142.1	3971.4	1509.7	924.4	4327.3	4157.3
100	0.06	6 0.06	6 0.998	3 0.067	1470.9	1424.7	493.5	300.9	1641.9	1523.1	1048.3	837.8	1845.2	1463.5	3029.7	2809.6	1873.1	1435.6	3448.8	3228.7	1488.7	955.9	4136.4	3973.9	1496.0	938.6	4321.7	4159.8
95	0.06	3 0.06	3 0.998	0.063	1470.1	1426.2	486.3	303.3	1639.3	1526.4	1040.7	840.7	1836.0	1473.4	3022.3	2813.3	1862.5	1446.9	3441.5	3232.4	1475.6	969.5	4130.7	3976.3	1482.3	952.8	4316.1	4162.2
90	0.06	0 0.06	0 0.998	0.060	1469.2	1427.6	479.0	305.7	1636.6	1529.7	1033.1	843.7	1826.8	1483.3	3014.9	2816.8	1851.9	1458.2	3434.1	3236.1	1462.5	983.1	4125.0	3978.7	1468.7	967.0	4310.4	4164.6
80	0.05			0.050	1468.3	1429.1	471.8	308.1	1634.0	1533.0	1025.5	840.0	1017.0	1493.1	3007.4	2820.4	1841.3	1469.5	3420.8	3239.7	1449.5	996.6	4119.2	3981.0	1455.0	981.2	4304.6	4167.0
80	0.05	3 0.05	3 0.995	0.053	1467.4	1430.5	464.5	310.5	1631.3	1530.3	1017.9	849.5	1808.3	1503.0	3000.0	2823.9	1830.0	1480.7	3419.4	3243.3	1430.4	1010.2	4113.4	3983.3	1441.2	995.3	4298.8	4169.3
75	0.05	6 0.03		0.050	1400.5	1431.9	457.5	312.9	1625.0	1539.5	1010.3	002.0 855.4	1799.1	1512.0	2992.0	2820.0	1800.3	1491.9	3411.9	3240.9	1423.2	1023.7	4107.5	3965.0	1427.3	1009.5	4293.0	4171.0
65	0.04	3 0 04	3 0.333	0.047	1464.7	1434.6	442.8	317.6	1623.3	1545.9	995.1	858.3	1780.5	1532.0	2904.9	2834.3	1798.6	1514.3	3306.0	3253.9	1397.0	1057.2	4095.6	3980 0	1410.0	1023.0	4281.2	4176.0
60	0.04	0 0 04		0.040	1463.7	1436.0	435.5	320.0	1620.4	1549.1	987.4	861.1	1771 2	1542.2	2969.7	2837.7	1787.9	1525.5	3389.4	32574	1383.8	1064.2	4089.6	3992.0	1386.3	1051.8	4275.2	4178.1
55	0.03	7 0.03	6 0.999	0.037	1462.7	1437.3	428.2	322.3	1617.6	1552.3	979.8	864.0	1761.9	1551.9	2962.1	2841.1	1777.2	1536.6	3381.8	3260.8	1370.7	1077.7	4083.5	3994.1	1372.5	1065.9	4269.2	4180.2
50	0.03	3 0.03	3 0 999	0.033	1461 7	1438.7	421.0	324.7	1614.8	1555.4	972.1	866.9	1752.5	1561.7	2954.4	2844.4	1766.4	1547.7	3374.2	3264.2	1357.5	1091.1	4077.4	3996.1	1358.7	1080.0	4263.2	4182.2
45	0.03	0 0.03	0 1.000	0.030	1460.7	1440.0	413.7	327.0	1612.0	1558.6	964.5	869.7	1743.1	1571.4	2946.7	2847.7	1755.7	1558.8	3366.5	3267.5	1344.3	1104.6	4071.3	3998.1	1344.9	1094.0	4257.1	4184.2
40	0.02	7 0.02	7 1.000	0.027	1459.7	1441.3	406.4	329.4	1609.2	1561.7	956.8	872.6	1733.8	1581.1	2939.0	2851.0	1744.9	1569.9	3358.8	3270.8	1331.1	1118.0	4065.1	4000.1	1331.0	1108.1	4250.9	4186.1
35	0.02	3 0.02	3 1.000	0.023	1458.7	1442.5	399.1	331.7	1606.4	1564.8	949.1	875.4	1724.3	1590.8	2931.2	2854.2	1734.1	1581.0	3351.1	3274.1	1317.9	1131.4	4058.9	4002.0	1317.2	1122.1	4244.7	4188.0
30	0.02	0 0.02	0 1.000	0.020	1457.6	1443.8	391.8	334.0	1603.5	1567.9	941.4	878.2	1714.9	1600.4	2923.4	2857.4	1723.3	1592.1	3343.4	3277.3	1304.7	1144.9	4052.6	4003.8	1303.4	1136.1	4238.5	4189.9
25	0.01	7 0.01	7 1.000	0.017	1456.6	1445.0	384.5	336.4	1600.6	1570.9	933.7	881.1	1705.5	1610.1	2915.6	2860.6	1712.5	1603.1	3335.6	3280.5	1291.4	1158.2	4046.3	4005.6	1289.5	1150.2	4232.2	4191.7
20	0.01	3 0.01	3 1.000	0.013	1455.5	1446.3	377.2	338.7	1597.7	1574.0	926.0	883.9	1696.0	1619.7	2907.8	2863.7	1701.6	1614.1	3327.7	3283.7	1278.2	1171.6	4039.9	4007.4	1275.6	1164.2	4225.8	4193.4
15	0.01	0.01	0 1.000	0.010	1454.4	1447.5	369.9	341.0	1594.8	1577.0	918.2	886.7	1686.5	1629.3	2899.9	2866.9	1690.7	1625.1	3319.8	3286.8	1264.9	1185.0	4033.5	4009.1	1261.7	1178.1	4219.4	4195.1
10	0.00	7 0.00	7 1.000	0.007	1453.3	1448.7	362.6	343.4	1591.9	1580.0	910.5	889.5	1677.0	1638.9	2891.9	2869.9	1679.8	1636.1	3311.9	3289.9	1251.6	1198.3	4027.0	4010.8	1247.8	1192.1	4213.0	4196.8
5	0.00	3 0.00	3 1.000	0.003	1452.1	1449.8	355.3	345.7	1589.0	1583.0	902.8	892.2	1667.5	1648.4	2884.0	2873.0	1668.9	1647.1	3304.0	3293.0	1238.3	1211.7	4020.5	4012.4	1233.9	1206.1	4206.5	4198.4
0	0.00	0.00	0 1.000	0.000	1451.0	1451.0	348.0	348.0	1586.0	1586.0	895.0	895.0	1658.0	1658.0	2876.0	2876.0	1658.0	1658.0	3296.0	3296.0	1225.0	1225.0	4014.0	4014.0	1220.0	1220.0	4200.0	4200.0

E1= [ ab + (h x tan α )] x cos α

F1 = [ ab - (h x tan α )] x cos α

H1 = (Ca / 2) +(h/cos  $\alpha$ ) + (Ab-h x tan  $\alpha$ ) x sin  $\alpha$ 

H2 = (Ca / 2) +(h/cos α) - (Ab+h x tanα) x sin α

ab = Ab = Distance from inclined centre line of vehicle to Structure Gauge for tangent track at height 'h' from rail level in the direction parallel to the line joining the top of rails.

ac = Distance from niclined centre line of canted track to Structure Gauge for tangent track at height 'h' from rail level in the direction parallel to the line joining the top of rails.

<b>MAR</b>	
MPMETRO	

	APPENDIX - 4										
	LATERA	L AND VERTIC	AL SHIFT OF	CENTRE OF CIR	CULAR TUN	NEL FOR DIFFERENT CANT VALUES					
		REFERENCE	DRAWING NUME	BER: MPMRCL/GE	N/SOD/UND -04	AND PARAs 1.7.1 B & 1.7.2 B					
Tan(	q) = (r-D)/(G/2)	2.707365627				Radius of circular tunnel ' r ' = 2800					
	q in radians	1.216977044				Height from invert to rail level $D_1 = \frac{760}{760}$					
Cant	sin α	α	Angle Pi()/2- θ- α/2)	Lateral shift of tunnel centre =X	Vertical shift of tunnel centre =Y	Remarks					
mm		radians	radians	mm	mm	(A). THE CANT IS PROVIDED BY ROTATING THE					
125	0.082946251	0.0830416593	0.3123	172	55	TUNNEL ABOUT THE MID POINT OF TOP OF INNER					
120	0.079628401	0.0797127915	0.3140	165	54	RAIL, THIS WILL RESULT IN LATERAL AND VERTICAL					
115	0.076310551	0.0763848087	0.3156	158	52	SHIFT OF THE CENTRE OF THE CIRCOLAR TONNEL.					
110	0.072992701	0.0730576733	0.3173	151	50	(B). LATERAL SHIFT OF THE CENTRE OF THE					
105	0.069674851	0.0697313480	0.3190	144	48	TUNNEL (TOWRDS INSIDE OF CURVE) IS					
100	0.066357001	0.0664057952	0.3206	137	46						
95	0.063039151	0.0630809777	0.3223	130	43	$X = [\{ 2 x (r-D_1)/\sin\theta \} x \sin(\alpha/2) \}] x \cos(90-\theta-\alpha/2)$					
90	0.059721301	0.0597568584	0.3239	123	41						
85	0.056403451	0.0564334000	0.3256	116	39	(C). VERTICAL SHIFT OF THE CENTRE OF THE					
80	0.053085601	0.0531105655	0.3273	109	37	TUNNEL (UPWARDS) IS					
75	0.049767750	0.0497883178	0.3289	102	35	$Y = [1/2 \times (r_D_1)/(sinA) \times sin(\alpha/2)] \times sin(0(-A_{\alpha}/2))$					
70	0.046449900	0.0464666200	0.3306	96	33	$1 - [(2 \times (1 D_1)/(3 \pi 0)) \times (3 \pi (3 Z_1))] \times (3 \pi (3 U - 0)/(3 Z_1))$					
65	0.043132050	0.0431454353	0.3322	89	31	where,					
60	0.039814200	0.0398247266	0.3339	82	28						
55	0.036496350	0.0365044573	0.3356	75	26	'r' is internal radius of the circular tunnel = 2800mm					
50	0.033178500	0.0331845906	0.3372	68	24						
45	0.029860650	0.0298650897	0.3389	61	22	'D ₁ ' is the depth from rail level to invert of circular tunnel.					
40	0.026542800	0.0265459179	0.3405	54	19						
35	0.023224950	0.0232270387	0.3422	48	17	$\alpha$ is the angle of rotation = sin (Cant /G) and					
30	0.019907100	0.0199084153	0.3439	41	15	'θ' is angle subtended by line joining top of two rails and					
25	0.016589250	0.0165900112	0.3455	34	12	the line joining mid point of top of inner rail and the					
20	0.013271400	0.0132717897	0.3472	27	10	centre of cirular Tunnel;					
15	0.009953550	0.0099537145	0.3488	20	7	]					
10	0.006635700	0.0066357488	0.3505	14	5	= tan -1[(r-D ₁ )/(G/2) in degrees = 69.752367					
5	0.003317850	0.0033178561	0.3522	7	2	]					
0	0.00000000	0.000000000	0.3538	0	0	G = Centre to centre of rails = 1507mm					



	APPENDIX - 5													
					AI U	DDITIONAL CI	_EARANCE F ND, ELEVATE	OR PLATFORM	S ON CURVE	ES IS				
							EXTRAC	LEARANCE						
				INSID	E OF CUR	VE					OUTSID	EOFCURVE	E	
		AT CENTR	RE LINE OF BO	GIES	AT EDGE	OF OPEN DOOI	R NEAREST TO	C.L. OFBOGIES	AT END OF COACH	D OF AT EDGE OF OPEN DOOR FARTHEST FROM C.L. OF BOGIES				
Radius	MID THROW =28125/R	NOSING	ADDITIONAL CLEARANCE	ADDITIONAL CLEARANCE (ROUNDED OFF NEAREST 5 mm, (i)	THROW =28121/R	NOSING = 17 x0.873/10.97	ADDITIONAL CLEARANCE	ADDITIONAL CLEARANCE (ROUNDED OFF NEAREST 5 mm, (ii)	END THROW =34020/R	THROW =19340/R	NOSING = 17 x 9.59/10.97	DIFFERENCE BETWEEN N AND N ₂	ADDITIONAL CLEARANCE	ADDITIONAL CLEARANCE (ROUNDED OFF NEAREST 5 mm, (ii)
R	v	N	V-N	V-N	V ₃	<b>N</b> 1	V ₃ - (N-N ₁ )	V ₃ - (N-N ₁ )	V ₀	V4	N ₂	N-N ₂	V ₄ -(N-N ₂ )	V ₄ -(N-N ₂ )
meters	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
<u>1</u>	<u>2</u>	<u>3</u>	<u>4a</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7a</u>	<u>Z</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12a</u>	<u>12</u>
3000	9.4	17.0	-7.6	0	9.4	1.1	-6.5	0	11	6.4	14.9	2.1	4.3	5
2800	10.0	17.0	-7.0	0	10.0	1.1	-5.8	0	12	6.9	14.9	2.1	4.8	5
2400	11.7	17.0	-5.3	0	11.7	1.1	-4.2	0	14	8.1	14.9	2.1	5.9	10
2000	14.1	17.0	-2.9	5	14.1	1.1	-1.8	5	17	9.7	14.9	2.1	7.5	10
1800	15.6	17.0	-1.4	5	15.6	1.1	-0.3	5	19	10.7	14.9	2.1	8.6	10
1600	17.6	17.0	0.6	5	17.6	1.1	1.7	5	21	12.1	14.9	2.1	9.9	10
1500	18.8	17.0	1.8	5	18.8	1.1	2.9	5	23	12.9	14.9	2.1	10.8	15
1200	23.4	17.0	6.4	10	23.4	1.1	7.6	10	28	16.1	14.9	2.1	14.0	15
1000	28.1	17.0	11.1	15	28.1	1.1	12.2	15	34	19.3	14.9	2.1	17.2	20
							1					1	1	
<b>NOTES</b>	For outside	e of curve	, the difference l	petween clearand	e required a	t coach end that	at the farthest	door edge is less th	an 25 mm. As	half width of	coach at ends	is at least 25 n	nm less than th	at at door
2.0	Values of a	ditional cl	earance (colum	n 4. 7 and 12) are	e rounded of	to the nearest 5		g- ()						
3.0	Negative val	ues of add	litional clearance	e are taken as Ze	ro in the col	umn 4 and 7 with	n rounded off fig	ures.						
4.0	Extra clear	ance for												
(a)	Inside of c		Surve.											
(u)	$V = (125 \text{ C}^2)^2$	(/R) = 281	25 / R with C=1	5.00 m for the w	orst case.									
	V ₃ = [(125)	x (15.0 ² ) -	4x0.873 ² ) R] =	28121 / R										
	$N_1 = N \times (X)$	/ (C ₁ /2) =	17 x 0.873 / 10	.97=1.03 mm										
	Minimum di	stance 'X I	for the nearest e	dge of an open d	oor from cer	tre line of Bogies	s is 0.873m (as	sumed).						
	Higher of (i)	in column	4 and (ii) in colu	umn 7 shall be a	dopted.									
(b)	Outside of	curve:												
	V ₀ = (125 C	1 ² / R) - (1	$25 \text{ C}^2 / \text{R}) = 340$	20/R for coach e	nd with C =	14.6m and $C_1 =$	2x10.97m.							
	V ₄ = 125 x	(19.18 x 19	9.18-14.6 x 14.6	) / R = 19340 / R	for the farth	est edge of end	door in open po	sition with $C_1 = 2 x$	9.590=19.18m	and C = 14.	60m for the wor	st case.		
	N ₂ = Nosing	g at the far	hest edge of an	open door = N x	(X) / (C ₁ /2)	= 17x9.59 / 10.9	7mm = 11.3 mr	n						
	R = Radius	of curve in	metres											
	Maximum d	aximum distance (X) for the farthest edge of open door from centre line of two bogies = 9.590m (assumed).												
	Exact posit	ion of doc	or will be finaliz	ed during the d	esign stage	•								
5.0	There will be	e no super	elevation on cur	ve in Platform po	tion.									



## LEGEND

STRUCTURE GAUGE

RE	REVISIONS								
2	18.01.22	Revised	MG	RS/CB	S.Fourie				
1	21.08.21	Revised/RDS0 comments dt.30.07.21	MG	RS/CB	S.Fourie				
0	28.05.19	First Submission	SM	GC	J.SWANN				
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved				



STRUCTURE GAUGE FOR AT-GRADE/ELEVATED SECTION HAS BEEN SHOWN AS A TYPICAL FIGURE. 2. THE FORMULA FOR  $E_1, F_1, H_1$  AND  $H_2$  SHOWN THIS FIGURE WILL ALSO APPLY TO UNDER GROUND BOX TUNNELS. 3. KINEMATIC ENVELOPE IS VALID FOR THE MAXIMUM SPEED OF 90 KMPH, WIND SPEED OF 100 KMPH. 4. MAXIMUM DESIRABLE CANT (CA) =110 MM, MAXIMUM DESIRABLE CANT DEFICIENCY(CD) = 85 MM

ab= Ab= Distance from centreline of track to structure gauge for tangent track at height 'h'  $E_1 = [ab+hx \tan \alpha) ] x \cos \alpha$  $F_1 = [ab-hx \tan \alpha] x \cos \alpha$  $H_l = (Ca/2) + (h/\cos \alpha) + (Ab-hxtan \alpha) x \sin \alpha$  $H_2 = (Ca/2) + (h/\cos \alpha) - (Ab + hx \tan \alpha) x \sin \alpha$ For values of  $E_1$ ,  $F_1$ ,  $H_1$  and  $H_2$ , refer to

Appendix 3A,3B & 3C.

	CLIENT												
	1	MADHYA PRADESH METRO RAIL CORP. LTD.											
	DRAWING TIT	LE											
J	EFFECT OF CANT ON STRUCTURE GAUGE (TYPICAL)												
	STANDARD GAUGE (1435) - 750 VOLT.D.C.TRACTION												
)	DRAWING NUI	MBER MF	PMRCL/GE	N/SOD/GEN-01		REV 2							
	SCALE	NTS	DATE	28/05/2019	STATUS								





$$V1 = 125 \times C^2/R$$
  

$$V2 = (125 \times C_1^2/R) - (125 \times C^2/R)$$
  

$$C = BOGIE CENTRE DISTANCE$$
  

$$C1 = COACH LENGTH$$



### NOTES:

- 1. THE FIGURE IS TYPICAL AND WILL APPLY TO UNDER GROUND ELEVATED AND AT-GRADE SECTIONS.
- 2. VALID FOR MAXIMUM SPEED OF 90 KMPH .

VERTICAL THROW									
RADIUS OF VERTICAL CURVE (M)	V ₁ (mm)	V ₂ (mm)							
1500	19	22							
1600	18	21							
1700	17	20							
1800	16	19							
1900	15	18							
2000	14	17							
2100	14	16							
2200	13	15							
2300	12	15							
2400	12	14							
2500	11	14							
2600	11	13							
2700	11	12							
2800	10	12							
2900	10	12							
3000	10	11							

LEGEND

STRUCTURE GAUGE

Page No. 45 of 68



## LEGEND

KINEMATIC ENVELOPE OF COACH

RE	VISION	S			
1	18.01.22	Revised	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved



1. KINEMATIC ENVELOPE FOR AT- GRADE/ELEVATED SECTION HAS BEEN SHOWN AS A TYPICAL FIGURE. 2. THE FORMULA FOR E1, F1, H1 AND H2 SHOWN THIS FIGURE WILL ALSO APPLY TO UNDER GROUND BOX 3. MAXIMUM DESIRABLE CANT (CA) =110 MM, MAXIMUM DESIRABLE CANT DEFICIENCY(CD) = 85 MM

ab= Ab= Distance from centreline of track to kinematic envelope for tangent track at height 'h'  $E = [ab+hxv \tan \alpha)] x \cos \alpha$  $F = [ab-hxtan \alpha)] x \cos \alpha$  $H_1 = (Ca/2) + (h/\cos \alpha) + (Ab-hxtan\alpha) x \sin \alpha$  $H_2 = (Ca/2) + (h/\cos \alpha) - (Ab + hxtan\alpha) x \sin \alpha$ For values of E, F,  $H_1$  and  $H_2$ , refer to

	CLIENT								
	MADI	HYA PRADES	H METRO RAIL C	ORP. LTD.					
	DRAWING TITLE								
<b>J</b>	EFFECT OF CANT ON KINEMATIC ENVELOPE (TYPICAL)								
	ST	ANDARD GAUG	E (1435) - 750 VOLT.	D.C.TRACTION					
)	DRAWING NUMBER	MPMRCL	/GEN/SOD/GEN-03		REV 1				
	SCALE	DATE	28/05/2019	STATUS					



Revised/RDSO comments dt.19.05.21

First Submission

DESCRIPTION

04.06.21

28.05.19

REV. DATE

MG RS/CB S.Fourie

Drawn Checked Approved

GC J.SWANN

SM



- 1. ALL DIMENSIONS ARE IN mm.
- HORIZONTAL AND VERTICAL 2. ALLOWANCE DUE TO CURVES, INCLUDING VERTICAL CURVES AND CANT SHALL BE EXTRA.
- 3. KINEMATIC ENVELOPE IS VALID FOR VEHICLES WITH SEALED WINDOWS AND CLOSED DOORS WHEN IN MOTION.
- 4. A TYRE OR ATTACHMENT OF A WHEEL MAY PROJECT BELOW THE MINIMUM HEIGHT OF KINEMATIC ENVELOPE FOR A DISTANCE OF 51 mm, INSIDE AND 216 mm OUTSIDE OF THE GAUGE FACE OF THE RAIL.
- 5. THE KINEMATIC ENVELOPE IS FOR A **DESIGN SPEED OF 90 KMPH WITH** WIND SPEED 100 KMPH.
- 6. COACH SIZE WIDTH=2900 mm AND HEIGHT=4080 mm.

CO-ORDINATES									
SL.NO.	X	Υ							
А	0	4200							
В	1220	4200							
С	1225	4014							
D	1658	3296							
E	1658	2876							
F	1586	895							
G	1550	700							
Н	1451	348							
I	1380	348							
J	1380	148							
К	1580	148							
L	1580	25							
М	1160	25							
N	1160	56							
0	0	56							

	CLIENT					
	MADH	IYA PRA	DESH ME	TRO RAIL C	ORP. LTD.	
	DRAWING TITLE					
	KINEMATIC ENVELOPE FOR AT-GRADE & ELEVATED					
	SECTION WITH BALLASTLESS TRACK ON LEVEL /					
••	CONSTANT GRADE (TANGENT TRACK)OUTSIDE STATION					
	STANDARD GAUGE (1435) - 750 VOLT.D.C.TRACTION					
	DRAWING NUMBER	MPN	/IRCL/GEN/	SOD/ELE-01		REV 2
	SCALE NT	s C	DATE	28/05/2019	STATUS	



2	18.01.22	Revised	MG	RS/CB	S.Fourie
1	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved



- 1. ALL DIMENSIONS ARE IN mm.
- 2. HORIZONTAL AND VERTICAL CLEARANCE DUE TO CURVES INCLUDING VERTICAL CURVES AND
- CANT SHALL BE EXTRA.
- 3. KINEMATIC ENVELOPE IS VALID FOR VEHICLES WITH SEALED WINDOWS AND DOORS CLOSED WHILE IN MOTION.
- 4. A TYRE OR ATTACHMENT OF A WHEEL MAY PROJECT BELOW THE MINIMUM HEIGHT OF KINEMATIC ENVELOPE FOR A DISTANCE OF 51 mm INSIDE AND 216 mm OUTSIDE OF THE GAUGE FACE OF THE RAIL.
- 5. KINEMATIC ENVELOPE IS VALID FOR THE MAXIMUM SPEED OF 90 KMPH AND SIDE WIND SPEED OF 42 KMPH.#42 KMPH SIDE WIND REPRESENTS 100 PA PRESSURE CONSIDERED AS BUFFETING EFFECT.
   6. COACH SIZE WIDTH=2900 mm AND
- 6. COACH SIZE WIDTH=2900 mm AN HEIGHT=4080 mm.

CO-ORDINATES				
SL.NO.	Х	Y		
А	0	4200		
В	1220	4200		
С	1225	4014		
D	1658	3296		
E	1658	2876		
F	1586	895		
G	1550	700		
Н	1451	348		
I	1380	348		
J	1380	148		
К	1580	148		
L	1580	25		
М	1160	25		
Ν	1160	56		
0	0	56		

	CLIENT					
MADHYA PRADESH METRO RAIL CO					orp. Ltd.	
	DRAWING	TITLE				
	KINEMATIC ENVELOPE FOR UNDERGROUND					
	SECTION WITH BALLASTLESS TRACK ON LEVEL /					
<b>0</b> •	CONSTANT GRADE (TANGENT TRACK)					
	STANDARD GAUGE (1435) - 750 VOLT.D.C.TRACTION					
	DRAWING	NUMBER MF	MRCL/GE	N/SOD/UND-02		REV 2
	SCALE	NTS	DATE	28/05/2019	STATUS	



### LEGEND

# COACH STATIC PROFILE KINEMATIC ENVELOPE OF COACH

REVISIONS					
2	18.01.22	Revised	MG	RS/CB	S.Fourie
1	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved



- 1. ALL DIMENSIONS ARE IN mm.
- 2. HORIZONTAL AND VERTICAL CLEARANCES DUE TO CURVES, INCLUDING VERTICAL CURVES
- AND CANT SHALL BE EXTRA.
  3. KINEMATIC ENVELOPE IS VALID FOR VEHICLES WITH SEALED WINDOWS AND CLOSED DOORS WHEN IN
- MOTION.
  4. COACH SIZE WIDTH=2900 mm AND HEIGHT=4080 mm.
- 5. THE KINEMATIC ENVELOPE IS FOR A DESIGN SPEED OF 90 KMPH WITH MAXIMUM PERMISSIBLE TOLERANCE FOR TRACK AND ROLLING STOCK FOR WIND SPEED OF 100 KMPH.

CO-ORDINATES				
SL.NO.	Х	Y		
А	0	4209		
В	1220	4209		
С	1225	4014		
D	1684	3311		
E	1683	2036		
F	1615	907		
G	1592	356		
H	1380	356		
_	1380	148		
J	1580	148		
K	1580	25		
L	1160	25		
М	1160	50		
Ν	0	50		

	CLIENT					
	MADHYA PRADESH METRO RAIL CORP. LTD.					
	DRAWING 1	TITLE				
	KINEMATIC ENVELOPE FOR SURFACE (AT-GRADE)					
	SECTION BALLASTED TRACK ON LEVEL / CONSTANT					
0	GRADE TANGENT TRACK) OUTSIDE STATION					
	STANDARD GAUGE (1435) - 750 VOLT.D.C.TRACTION					
	DRAWING NUMBER MPMRCL/GEN/SOD/ATG-01 2					
	SCALE	NTS	DATE	28/05/2019	STATUS	



KINEMATIC ENVELOPE OF	COACH

RE	REVISIONS				
2	18.01.22	Revised	MG	RS/CB	S.Fourie
1	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved



- 1. ALL DIMENSIONS ARE IN mm.
- 2. HORIZONTAL AND VERTICAL CLEARANCE DUE TO CURVES INCLUDING VERTICAL CURVES AND CANT SHALL BE EXTRA.
- 3. KINEMATIC ENVELOPE IS VALID FOR VEHICLES WITH SEALED WINDOWS AND DOORS CLOSED WHILE IN MOTION.
- 4. KINEMATIC ENVELOPE IS VALID FOR 70 KMPH OPERATING SPEED & WIND SPEED OF 70 KMPH.
- 5. COACH SIZE WIDTH=2900 mm AND HEIGHT=4080 mm.

CO-ORDINATES				
SL.NO.	X FOR At-Grade &	X FOR UG	Y	
Α	0	0	4200	
В	1220	1220	4200	
C	1225	1225	4014	
D	1233	1205	<mark>3814</mark>	
E	1583	1540	2973	
F	1570	1555	1689	
G	1519	1510	1095	
Н	1519	1510	929	
1	1440	1440	<mark>35</mark> 6	
J	1380	1 <mark>38</mark> 0	148	
К	1580	1580	148	
L	1160	1160	25	
M	1160	1160	50	
N	0	0	50	

	CLIENT					
		MADHYA PR	ADESH	METRO RAIL C	ORP. LTD.	
	DRAWING ⁻	TITLE KINEMA	TIC EN	VELOPE FOR	UNDERGE	ROUND
	& AT GRADE AND ELEVATED SECTION WITH					
	BALLASTLESS TRACK OVER PLATFORM LINE ON LEVEL /					
0	CONSTANT GRADE (TANGENT TRACK) (SPEED - 70 KMPH)					
	STANDARD GAUGE (1435) - 750 VOLT.D.C.TRACTION					
	DRAWING N	IUMBER MF	PMRCL/GI	EN/SOD/ELE & UI	ND	REV 2
	SCALE	NTS	DATE	28/05/2019	STATUS	



- 1. ALL DIMENSIONS ARE IN mm.
- 2. MINIMUM CLEARANCE BETWEEN KINEMATIC ENVELOPE AND STRUCTURE GAUGE WILL BE 150 mm.
- 3. THE KINEMATIC ENVELOPE & STRUCTURE GAUGE ARE VALID FOR ROLLING STOCK WITH SEALED WINDOWS & DOORS CLOSED WHILE IN MOTION.
- 4. HORIZONTAL & VERTICAL
  CLEARANCE DUE TO CURVES
  INCLUDING VERTICAL CURVE & CANT
  SHALL BE EXTRA.
- 5. FOR KINEMATIC ENVELOPE, REFER TO MPMRCL/GEN/SOD/ELE-01.
- 6. THE STRUCTURE GAUGE IS VALID FOR MAXIMUM SPEED OF 90 KMPH & WIND SPEED OF 100 KMPH.

CO-ORDINATES				
SL.NO.	Х	Y		
А	0	4350		
В	1366	4350		
С	1374	4058		
D	1808	3338		
Е	1808	2873		
F	1736	879		
G	1696	666		
Н	1607	348		
	1730	348		
J	1730	0		

	CLIENT						
	MADHYA PRADESH METRO RAIL CORP. LTD.						
	DRAWING TITLE						
	STRUCTURE GAUGE ON ELEVATED & AT GRADE						
	SECTION (BALLASTLESS TRACK ON LEVEL / CONSTANT						
0	TRACK TANGENT TRACK (OUT SIDE STATION)						
	STANDARD GAUGE (1435) - 750 VOLT.D.C.TRACTION						
	DRAWING NUMBER MPMRCL/GEN/SOD/ELE-02 1						
	SCALE	NTS	DATE	28/05/2019	STATUS		

# REFERENCE PARA NO.: 1.4.1(1) & 1.6.1



CIRCULAR TUNNEL 5600mm DIA

### LEGEND

 COACH STATIC PROFILE
 KINEMATIC ENVELOPE OF COACH
 STRUCTURE GAUGE

### REVISIONS

2	18.01.22	Revised	MG	RS/CB	S.Fourie
1	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved



- 1. ALL DIMENSIONS ARE IN mm.
- 2. KINEMATIC ENVELOPE AND STRUCTURE GAUGE ARE VALID FOR VEHICLES WITH SEALED WINDOWS AND DOORS CLOSED WHILE IN MOTION.
- 3. STRUCTURE GAUGE FOR CURVE DOES NOT INCLUDE LATERAL SHIFT (LEAN) DUE TO CANT.
- 4. HORIZONTAL AND VERTICAL CLEARANCE DUE TO CURVES INCLUDING VERTICAL CURVES AND CANT SHALL BE EXTRA.
- 5. CANT WILL BE PROVIDE BY RAISING OUTER RAIL ONLY AND SHIFTING OF THE CENTRE OF THE CIRCULAR TUNNEL TOWARDS INSIDE OF THE CURVE AND UPWARDS. THIS WILL BE SAME AS ROTATING THE CIRCULAR TUNNEL ABOUT THE MID POINT OF TOP OF INNER RAIL.
- 6. MINIMUM CLEARANCE BETWEEN KINEMATIC ENVELOPE AND STRUCTURE GAUGE=100 mm.
- 7. VERTICAL THROW DUE TO VERTICAL CURVE HAS NOT BEEN SHOWN IN THE FIGURE AND SHALL BE EXTRA.
- 8. FOR DETAILS OF KINEMATIC ENVELOP, REFER TO MPMRCL/GEN/SOD/UND-02.
- 9. COACH SIZE WIDTH=2900 mm AND HEIGHT=4080 mm.

CO-ORDINATES						
SL.NO. X Y						
А	0	4300				
В	833	4300				
С	1040	4246				
D	1170	4064				
E	1729	3320				
F	1729	2884				
G	1676	885				
Н	1638	679				
I	1554	348				
J	1680	348				
К	1680	0				

CLIENT						
MADHYA PRADESH METRO RAIL CORP. LTD.						
DRAWING TITLE STRUCTURE GAUGE FOR UNDERGROUND SECTION (CIRCULAR TUNNELS) WITH BALLASTLESS TRACK ON LEVEL / CONSTANT GRADE (TANGENT TRACK)						
	STANDARE	) GAUGE (1	435) - 750 VOL	T.D.C.TRACTIO	N	
DRAWING	NUMBER MI	PMRCL/GE	N/SOD/UND-0	)1	REV 2	
SCALE	NTS	DATE	28/05/2019	STATUS		



ALL DIMENSIONS ARE IN mm.

KINEMATIC ENVELOPE AND STRUCTURE GAUGE ARE VALID FOR VEHICLES WITH SEALED WINDOWS AND DOORS CLOSED WHILE IN MOTION.

3. STRUCTURE GAUGE FOR CURVE DOES NOT

INCLUDE LATERAL SHIFT (LEAN) DUE TO CANT. 4. HORIZONTAL AND VERTICAL CLEARANCE DUE TO CURVES INCLUDING VERTICAL CURVES AND CANT SHALL BE EXTRA.

5. CANT WILL BE PROVIDE BY RAISING OUTER RAIL ONLY AND SHIFTING OF THE CENTRE OF THE CIRCULAR TUNNEL TOWARDS INSIDE OF THE CURVE AND UPWARDS. THIS WILL BE SAME AS ROTATING THE CIRCULAR TUNNEL ABOUT THE MID POINT OF TOP OF INNER RAIL.

6. MINIMUM CLEARANCE BETWEEN KINEMATIC ENVELOPE AND STRUCTURE GAUGE=100 mm. 7. VERTICAL THROW DUE TO VERTICAL CURVE HAS NOT BEEN SHOWN IN THE FIGURE AND SHALL BE EXTRA.

8. FOR DETAILS OF KINEMATIC ENVELOP, REFER TO MPMRCL/GEN/SOD/UND-02.

9. COACH SIZE WIDTH=2900 mm AND HEIGHT=4080 mm.

CO-ORDINATES					
SL.NO.	X	Y			
А	0	4300			
В	833	4300			
С	1040	4246			
D	1170	4064			
E	1729	3320			
F	1729	2884			
G	1676	885			
Н	1638	679			
	1554	348			
J	1680	348			
К	1680	0			

LEGEND

—       KINEMATIC ENVELOPE OF COACH         —       STRUCTURE GAUGE	 COACH STATIC PROFILE
STRUCTURE GAUGE	 KINEMATIC ENVELOPE OF COACH
	 STRUCTURE GAUGE

	CLIENT							
	MADHYA PRADESH METRO RAIL CORP. LTD.							
	DRAWING TITLE							
	STRUCTURE GAUGE FOR UNDER GROUND SEC						-	
	(RECTANC	<b>JULAR BO</b>	OX TUNN	ELS) WIT	TH BALLAS	<b>FLES</b>	S	
0	TRACK ON L	EVEL / CO	ONSTAN	T GRADE	(TANGENT	TRA	CK)	
	STANDARD GAUGE (1435) - 750 VOLT.D.C.TRACTION							
	DRAWING NUMBER MPMRCL/GEN/SOD/UND-03					REV	1	
	SCALE N	rs DAT	E 20	3/05/2019	STATUS	•		
					1			


## NOTES:

- 1. ALL DIMENSIONS ARE IN mm.
- 2. HORIZONTAL AND VERTICAL CLEARANCES DUE TO CURVES, INCLUDING VERTICAL CURVES AND CANT SHALL BE EXTRA.
- 3. STRUCTURE GAUGE IS VALID FOR VEHICLES WITH SEALED WINDOWS AND DOORS CLOSED WHILE IN MOTION.
- 4. COACH SIZE WIDTH=2900 mm AND HEIGHT=4080 mm.
- 5. MINIMUM CLEARANCE BETWEEN KINEMATIC ENVELOPE & STRUCTURE GAUGE IS 150mm.

	CO-ORDINA	res
SL.NO.	X	Y
А	0	4359
В	1366	4359
С	1374	4058
D	1835	3356
E	1813	2032
F	1765	901
G	1765	0

	CLIENT					
$\mathbf{n}$			ADESH M	ETRO RAIL C	URP. LTD.	
	DRAWING	; TITLE				
		STRUCTURE	CALICE		DE CECTIO	N
		SIRUCIURE	GAUGE I	TUK AI-UKA	ADE SECTIO	IN
		(BALLASTED	)TRACK	ONIEVEI	/ CONSTAN	Т
		(DALLASILD	JINACK			1
		TRACK T	'ANGEN'	COUT SIDE	STATION	
		STANDARD	) GAUGE (14	435) - 750 VOLT.I	D.C.TRACTION	
	DRAWING	NUMBER				REV
		MF	PMRCL/GE	N/SOD/ATG-02		1
	SCALE		DATE		STATUS	
101000000000000		NTS		28/05/2019		

## REFERENCE PARA NO.: 1.7.1B (b) & 1.7.2 B (b) & APPENDIX-4

 $\tan \theta = (r-D_1) / (g/2)$  $\theta = \tan^{-1} [(r-D_1) / (g/2)]$  $\sin \alpha = \operatorname{cant/g}$  $\alpha = \sin^{-1} (\operatorname{cant/g})$ Chord  $c_1 c_2 = 2x[(r-D_1)/\sin \theta)x(\sin \alpha/2)]$  $X = c_1 c_2 x \cos (90 - \theta - \alpha/2)$ =2 x [{(r-D₁) /sin  $\theta$ } x (sin  $\alpha$  /2)] x cos (90- $\theta$ - $\alpha$ /2)  $Y=2 \times \left[ \left\{ (r-D_1)/\sin \theta \right\} \times (\sin \alpha / 2) \right] \times \sin (90-\theta - \alpha / 2)$ Where 'r' is internal radius of tunnel.  $D_1$  = depth from Rail level to invert of tunnel g=distance between centers of rails = 1510mm

# DETAIL AT CENTRE OF TUNNEL



RE	VISION	IS			
2	18.01.22	Revised	MG	RS/CB	S.Fourie
1	21.08.21	Revised/RDSO comments dt.30.07.21	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved





STATUS

28/05/2019

SCALE

DATE

NTS

2



REVISIONS					
4	18.01.22	Revised	MG	RS/CB	S.Fourie
3	21.08.21	Revised/RDSO comments dt.30.07.21	MG	RS/CB	S.Fourie
2	04.06.21	Revised/RDSO comments dt.19.05.21	MG	RS/CB	S.Fourie
1	04.05.21	Revised as per RDSO checklist	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved





1///	STRUCTURE GAUGE
	KINEMATIC ENVELOPE OF COACH
	COACH STATIC PROFILE

REVISIONS					
4	18.01.22	Revised	MG	RS/CB	S.Fourie
3	21.08.21	Revised/RDS0 comments dt.30.07.21	MG	RS/CB	S.Fourie
2	04.06.21	Revised/RDSO comments dt.19.05.21	MG	RS/CB	S.Fourie
1	04.05.21	Revised as per RDSO checklist	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved





	(1010)	2			
REVISIONS					
4	18.01.22	Revised	MG	RS/CB	S.Fourie
3	21.08.21	Revised/RDS0 comments dt.30.07.21	MG	RS/CB	S.Fourie
2	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie
1	04.05.21	Revised as per RDSO checklist	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved



Page No. 58 of 68



1///	STRUCTURE GAUGE
	KINEMATIC ENVELOPE OF COACH
	COACH STATIC PROFILE

REVISIONS					
4	18.01.22	Revised	MG	RS/CB	S.Fourie
3	21.08.21	Revised/RDS0 comments dt.30.07.21	MG	RS/CB	S.Fourie
2	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie
1	04.05.21	Revised as per RDSO checklist	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved



# REFERENCE PARA NO.: 2.2.4 & 2.2.5



////	STRUCTURE GAUGE
	KINEMATIC ENVELOPE OF COACH
	COACH STATIC PROFILE

REVISIONS					
3	18.01.22	Revised	MG	RS/CB	S.Fourie
2	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie
1	04.05.21	Revised/RDSO letter no. UTHS/120/MPMRCL dt.10.02.20	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved



STATUS

28/05/2019

SCALE

DATE

NTS

Page No. 60 of 68

# REFERENCE PARA NO.: 2.2.4 & 2.2.5



REVISIONS					
3	18.01.22	Revised	MG	RS/CB	S.Fourie
2	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie
1	04.05.21	Revised as per RDSO checklist	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved





REVISIONS						
3	18.01.22	Revised	MG	RS/CB	S.Fourie	
2	04.06.21	Revised / RDSO comments dt.19.05.21	MG	RS/CB	S.Fourie	
1	04.05.21	Revised as per RDSO checklist	MG	RS/CB	S.Fourie	
0	28.05.19	First Submission	SM	GC	J.SWANN	
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved	



WIT	H SIDE PLA	TFORM	S ON LEVEI	/CONSTANT	GRADE	
TA	NGENT TRA	ACK WI	TH PLATFO	RM SCREEN	DOOR	
	STANDARE	) GAUGE (	(1435) - 750 VOL ⁻	T.D.C.TRACTION		
DRAWING NUMBER MPMRCL/GEN/SOD/UND-07						
SCALE	NTS	DATE	28/05/2019	STATUS		

# REFERENCE PARA NO.: 2.2.4 & 2.2.5



1///	STRUCTURE GAUGE
	KINEMATIC ENVELOPE OF COACH
	COACH STATIC PROFILE

RE	REVISIONS					
3	18.01.22	Revised	MG	RS/CB	S.Fourie	
2	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie	
1	04.05.21	Revised as per RDSO checklist	MG	RS/CB	S.Fourie	
0	28.05.19	First Submission	SM	GC	J.SWANN	
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved	





## LEGEND

# COACH STATIC PROFILE KINEMATIC ENVELOPE OF COACH

RE	REVISIONS							
4	18.01.22	Revised	MG	RS/CB	S.Fourie			
3	21.08.21	Revised/RDS0 comments dt.30.07.21	MG	RS/CB	S.Fourie			
2	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie			
1	04.05.21	Revised/RDSO letter no. UTHS/120/MPMRCL dt.10.02.20	MG	RS/CB	S.Fourie			
0	28.05.19	First Submission	SM	GC	J.SWANN			
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved			



2. HORIZONTAL AND VERTICAL CLEARANCES DUE TO CURVES, INCLUDING VERTICAL CURVES AND CANT SHALL BE EXTRA. 3. KINEMATIC ENVELOPE IS VALID FOR VEHICLES WITH SEALED WINDOWS AND DOORS CLOSED WHILE IN MOTION. 5. FOR CURVED PLATFORM, THESE DIMENSIONS TO BE

INCREASED AS TABLE IN APPENDIX-5. 6. DESIGN SPEED OVER PLATFORM LINES SHALL NOT EXCEED

7. THE KINEMATIC ENVELOPE IS VALID FOR A WIND SPEED OF



4	18.01.22	Revised	MG	RS/CB	S.Fourie
3	21.08.21	Revised/RDS0 comments dt.30.07.21	MG	RS/CB	S.Fourie
2	04.06.21	Revised/RDS0 comments dt.19.05.21	MG	RS/CB	S.Fourie
1	04.05.21	Revised/RDSO letter no. UTHS/120/MPMRCL dt.10.02.20	MG	RS/CB	S.Fourie
0	28.05.19	First Submission	SM	GC	J.SWANN
REV.	DATE	DESCRIPTION	Drawn	Checked	Approved



2. HORIZONTAL AND VERTICAL CLEARANCES DUE TO CURVES, INCLUDING VERTICAL CURVES AND CANT 3. KINEMATIC ENVELOPE IS VALID FOR VEHICLES WITH

5. DESIGN SPEED OVER PLATFORM LINES SHALL NOT 6. THE KINEMATIC ENVELOPE IS VALID FOR A WIND SPEED

	CLIENT					
		MADHYA PR	ADESH M	IETRO RAIL (	CORP. LTD.	
	DRAWING	TITLE			/	
	PLA	TFORM SCR	EEN GA'	TE AT ELEV	'ATED/AT GI	RADE
			VEL OP	CONSTANT	CPADE TAN	JGENT
	(STATION) ON LEVEL OK CONSTANT GRADE TANGENT					
0.	TRACK					
		STANDARD	GAUGE (1	435) - 750 VOLT	.D.C.TRACTION	
	DRAWING N					REV
			WINCE/GE	N/SOD/F3D-02	-	4
	SCALE	NITO	DATE	00/05/0040	STATUS	
		NIS		28/05/2019		



H Height above	E as per table	F as per	Distance between center	Clearance		
Rail level	Appendix 3E	Appendix 3E	line of Track to tunnel	Inner Rail	Outer Rail	
348	1474.9	1417.1	2231	756.1	813.9	
895	1654.8	1506.3	2555	900.2	1048.7	
2876	1890.8	1413.7	2673	782.2	1259.3	
3296	1925.7	1378.9	2502	576.3	1123.1	
4014	1553.7	887.8	1986	432.3	1098.2	
4200	1564.2	867.4	1782	217.8	914.6	

1. ALL DIMENSIONS ARE IN mm.

2. HORIZONTAL AND VERTICAL CLEARANCES DUE TO CURVES, INCLUDING VERTICAL CURVES AND CANT SHALL BE EXTRA.

3. STRUCTURE IS VALID FOR VEHICLES WITH SEALED WINDOWS AND CLOSED DOORS WHILE IN MOTION. 4. COACH SIZE WIDTH=2900 mm AND HEIGHT=4080 mm. 5. MIN. CLEARANCE BETWEEN KINEMATIC ENVELOPE & STRUCTURE GAUGE IS 100mm.

	CLIENT					
	MADH	IYA PRADESH	METRO RAIL C	ORP. LTD.		
	DRAWING TITLE DERAILN (CIRCU) WIT	IENT PROFIL LAR TUNNEL H MAX CAN	E FOR UNDEF S) WITH BAL T & MIN RAD	RGROUND S LASTLESS T	ECTION RACK VF	
	** 11.				• L	
	STANDARD GAUGE (1435) - 750 VOLT.D.C.TRACTION					
)	DRAWING NUMBER MPMRCL/GEN/SOD/UND-DR-01A REV 1					
	SCALE NT	S DATE	21/08/2021	STATUS		



H Height above	E as per table	F as per	Distance between center	Clearance		
Rail level	Appendix 3E	Appendix 3E	line of Track to tunnel	Inner Rail	Outer Rail	
348	1474.9	1417.1	2231	756.1	813.9	
895	1654.8	1506.3	2555	900.2	1048.7	
2876	1890.8	1413.7	2673	782.2	1259.3	
3296	1925.7	1378.9	2502	576.3	1123.1	
4014	1553.7	887.8	1986	432.3	1098.2	
4200	1564.2	867.4	1782	217.8	914.6	

## 1. ALL DIMENSIONS ARE IN mm. 2. HORIZONTAL AND VERTICAL CLEARANCES DUE TO CURVES, INCLUDING VERTICAL CURVES AND CANT SHALL BE EXTRA.

3. STRUCTURE IS VALID FOR VEHICLES WITH SEALED WINDOWS AND CLOSED DOORS WHILE IN MOTION. 4. COACH SIZE WIDTH=2900 mm AND HEIGHT=4080 mm. 5. MIN. CLEARANCE BETWEEN KINEMATIC ENVELOPE & STRUCTURE GAUGE IS 100mm.

	CLIENT					
	MADH	IYA PRA	DESH ME	TRO RAIL C	ORP. LTD.	
Ĭ	DRAWING TITLE DERAILN (CIRCU) WIT	IENT P LAR TU H MAX	ROFILE I JNNELS) . CANT &	FOR UNDEF WITH BAL & MIN. RAD	RGROUND S LASTLESS T IUS OF CUR	ECTION RACK VE
	ST	ANDARD	GAUGE (14:	35) - 750 VOLT.I	D.C.TRACTION	
)	DRAWING NUMBER MPMRCL/GEN/SOD/UND-DR-01B REV 1					REV 1
	SCALE NT	S	DATE	21/08/2021	STATUS	





### Attachment – 4 to Corrigendum – 7

Volume IV: ER-TS - TEL

### APPENDIX VIII SUMMARY OF EQUIPMENTS FOR BHOPAL METRO (PURPLE LINE AND RED LINE) AND INDORE METRO (YELLOW LINE) PROJECTS OF MPMRCL FOR TELECOMMUNICATION SYSTEMS

S. No	SYSTEM
1.	FOTS & OA-IT
2.	Telephone System (TEL)
3.	Emergency Help Point System (EHPS)
4.	Public Address System (PAS)
5.	Passenger Information Display System (PIDS)
6.	Time Distribution System (TDS)
7.	CCTV System (Including Video wall)
8.	Access Control & Intrusion Detection System (ACIDS)

**Note:** The summary of equipment has been prepared for easy reference by the bidders. This summary indicated in this appendix is the minimum tentative quantity for the above systems. Being design-built contract, any additional items or enhancement of any quantity to complete the scope of work for all Telecommunication systems including the above systems, in line with practices of other metro and various tender drawings, shall be borne by the Tenderer without any additional cost.



## 1. FOTS & OA-IT

SI. No.	Item Description	UOM	QTY for Bhopal	QTY for Indore	Total QTY
1	Fully redundant Central Core Switches for FOTS and associated accessories	Nos.	4	4	8
2	Layer 3 Distribution switches for FOTS and associated accessories for stations, RSSs, Depots, TERs, etc	Nos.	64	62	126
3	Layer 2 Access PoE Switches 24-port for FOTS and associated accessories for TERs, Stations, Depots, etc.	Lots	1 Lot	1 Lot	2 Lots
4	Layer 2 Access non-PoE Switches 24- port for FOTS and associated accessories for Stations, Depots, etc.	Lots	1 Lot	1 Lot	2 Lots
5	Central Core Switches for OA & IT and associated accessories.	Nos.	2	2	4
6	Access switches for OA & IT and associated accessories for stations, Depots, etc.	Nos.	32	31	63
7	Network Management System along with servers, workstations and associated accessories for FOTS.	Nos.	2	2	4
8	Network Management System along with servers, workstations and associated accessories for OA & IT System.	Nos.	2	2	4
9	Routers, Firewalls & Unified Threat Management Systems for Cyber Security	Lots	1 Lot	1 Lot	2 Lots
10	96 Fibres Armoured Cable for Stations, depots, etc	Kms	67	69	136
11	24 Fibres Armoured Cable for Stations, depots, RSS etc	Kms	72	74	146
12	HDPE Telecom Duct (40/33mm) for stations, depots, etc	Kms	234	240	474
13	19" Rack, Cable managers, Optical Distribution Frames, Distribution boards, Patch panels, Loop boxes for fibre, Power Cables, Data Cables, Pigtails, Patch Cards, Connectors, Terminations etc. as per requirements of TS for stations, SCR, OCCs, TERs, depots, RSSs, FOTS – OA&IT etc.	Lots	1 Lot	1 Lot	2 Lots



SI. No.	Item Description	UOM	QTY for Bhopal	QTY for Indore	Total QTY
14	Any Other Items necessary for meeting fully the Contract Requirements as per TS.	Lots	1 Lot	1 Lot	2 Lots

## 2. Telephone System (TEL)

SI. No.	Item Description	UOM	QTY for Bhopal	QTY for Indore	Total QTY
1	EPABX system complete with fully redundant Server and wired with Analog cards, digital cards, Ethernet ports, etc and associated accessories	Nos	4	4	8
2	Network Management System along with Servers, Workstations & Central Telephone System and associated accessories for Telephone System	Sets	2	2	4
3	Full Features IP Telephone	Nos	46	46	92
4	Standard Features IP Telephone	Nos	545	529	1074
5	Hot Line Telephones for OCC and	Nos	8	8	16
6	TEL Laptop PCs with application software and accessories	Nos	2	2	4
7	One unit of each type of TEL Test Jig as per Para 4.6.2 of Telecom TS	sets	1	1	2
8	10% Full Features IP Telephone Desktop	Nos	5	5	10
9	10% Standard Features IP Telephone Desktop	Nos	55	53	108
10	Stranded patch cord type 8P8C LAN cable 1.5m long for movable desktop telephone	Nos	50	50	100
11	Stranded patch cord type 8P8C LAN cable 3m long for movable desktop telephone	Nos	50	50	100
12	Stranded patch cord type 8P8C LAN cable 5m long for movable desktop telephone	Nos	50	50	100
13	10% Standard Features IP Telephone with Wall mount kit	Nos	55	53	108
14	TEL OCC Server Exchange equipment provided at TER-OCC	Nos	1	1	2
15	NMS Workstation fully loaded with NMS software	Nos	1	1	2
16	Each type of exchange subscriber line card as per Para 4.7.9 of Telecom TS	Nos	10%+1	10%+1	



SI. No.	Item Description	UOM	QTY for Bhopal	QTY for Indore	Total QTY
17	Each type of exchange junction line card as per Para 4.7.10 of Telecom TS	Nos	10%+1	10%+1	
18	Each type of exchange system control card as per Para 4.7.11 of Telecom TS	Nos	10%+1	10%+1	
19	Call Control Server, loaded with operating system, applications and databases	Nos	1	1	2
20	Each type of power supply module as per Para 4.7.13 of Telecom TS.	Nos	10%+1	10%+1	
21	Other spares recommended by Manufacturer / Bidder	Lots	1 Lot	1 Lot	2 Lots
22	TEL Equipment for Telecom Workshop training	Lots	1 Lot	1 Lot	2 Lots
23	19" Rack, Cable managers, Optical Distribution Frames, Distribution boards, Patch panels, Loop boxes for fibre, Power Cables, Data Cables, Pigtails, Patch Cards, Connectors, Terminations etc. as per requirements of TS for stations, OCCs, TERs, depots, RSSs, etc.	Lots	1 Lot	1 Lot	2 Lots
24	Any Other Items necessary for meeting fully the Contract Requirements as per TS.	Lots	1 Lot	1 Lot	2 Lots



## 3. Emergency Help Point System (EHPS)

SI.	Item Description	UOM	QTY for	QTY for	Total
NO.			Bhopal	Indore	QIY
1	EHPS Server	Nos.	2	2	4
2	EHPS NMS	Nos.	2	2	4
3	EHPS Telephones	Nos.	267	275	542
4	EHPS Dispatcher Workstation with Button Box	Nos.	74	72	146
5	EHPS Button Box	Nos.	60	58	118
6	EHPS Laptop PCs	Nos.	2	2	4
7	Hand Specialized Tools	Nos.	2	2	4
8	Test Jig	Nos.	1	1	2
9	EHPS Dispatcher Button Box	Nos.	1	1	2
10	EHPS Dispatcher (Spare)	Nos.	14	14	28
11	EHPS Telephones identical to Cross Passage EHPS Telephone	Nos.	10	10	20
12	EHPS Button Box (Spare)	Nos.	7	7	14
13	EHPS Directional Tunnel Signs	Nos.	50	82	132
14	19" Rack, Cable managers, Optical Distribution Frames, Distribution boards, Patch panels, Loop boxes for fibre, Power Cables, Data Cables, Pigtails, Patch Cards, Connectors, Terminations etc. as per requirements of TS for stations, OCCs, TERs, depots, RSSs, etc.	Lots	1 Lot	1 Lot	2 Lots
15	Any Other Items necessary for meeting fully the Contract Requirements as per TS.	Lots	1 Lot	1 Lot	2 Lots



## 4. Public Address System (PAS)

SI. No.	Item Description	UOM	QTY for Bhopal	QTY for Indore	Total QTY
1	PAS Server for OCC/Station	nos.	32	31	63
2	Digital Voice Announcer and Recorder	nos.	32	31	63
3	PAS Work Station for Station PAS	nos.	34	33	47
4	Desktop Controllers for Station PAS	nos.	38	37	75
5	PAS NMS	nos.	2	2	4
6	Desktop controllers with microphone for Depot PAS	nos.	17	17	34
7	PAS Speakers (Ceiling, Wall-mount, Projection, Horn)	nos.	5828	5653	11481
8	PAS laptop PCs with application software complete with all software and accessories	nos.	2	2	4
9	Portable Sound Level Measurement Devices	nos.	2	2	4
10	One test jig of each type recommended by the manufacturer for maintenance of the PAS equipment.	sets	1	1	2
11	Station PAS SCR desktop controller (Spare)	nos.	3	3	6
12	Station PAS gooseneck microphone for SCR desktop controller (Spare)	nos.	10	10	20
13	Station PAS OCC/BCC desktop controller (Spare)	nos.	2	2	4
14	Station PAS gooseneck microphone for OCC/BCC desktop controller (Spare)	nos.	3	3	6
15	Station PAS Workstation for OCC/BCC (Spare)	nos.	1	1	2
16	Spares 10% plus one for each installed Station PAS OCC/BCC Server	nos.	4	4	8
17	Spares 10% plus one of each type of PA Speaker in stations	nos.	583	565	1148
18	Other spare parts recommended by the manufacturer and The Contractor.	sets	1	1	2
19	PAS Equipment for Telecom Workshop Training	sets	1	1	2
20	Depot PAS Desktop Controller (Spares)	nos.	5	5	10
21	Depot PAS Microphone for Desktop Controllers (Spares)	nos.	10	10	20



SI. No.	Item Description	UOM	QTY for Bhopal	QTY for Indore	Total QTY
22	Depot PAS Workstation for NMS Room (Spares)	nos.	1	1	2
23	Depot PAS Server (Spares)	nos.	1	1	2
24	19" Rack, Cable managers, Optical Distribution Frames, Distribution boards, Patch panels, Loop boxes for fibre, Power Cables, Data Cables, Pigtails, Patch Cards, Connectors, Terminations etc. as per requirements of TS for stations, OCCs, TERs, depots, RSSs, etc.	Lots	1 Lot	1 Lot	2 Lots
25	Amplifiers, Special Microphones and any other Items necessary for meeting fully the Contract Requirements as per TS.	Lots	1 Lot	1 Lot	2 Lots



## 5. Passenger Information Display System (PIDS)

SI. No.	Item Description	UOM	QTY for	QTY for	Total QTY
1	PIDS NMS Son/or	noc	Эпора		4
2	PIDS Central Server	nos	2	2	4
2	PIDS Workstations	sote	28	27	75
3	PIDE Single Sided Displays for Canaduras	sets	62	61	10
4	PIDS Single Sided Displays for Concourse	Seis	03	01	124
5	PIDS Double Sided Displays for Platforms	nos.	120	116	236
6	PIDS Laptop with accessories and software to configure and maintain the PIDS	nos.	2	2	4
7	Any other type of instrument used for maintenance of PIDS	sets	1	1	2
8	PIDS Test jig of each type recommended by the manufacturer for maintenance of the PIDS equipment	sets	1	1	2
9	Spare 1 (one) for each installed PIDS Workstation for OCC	nos.	4	4	8
10	Spare 1 (one) for each installed PIDS Workstation for Station Control Room	nos.	30	29	59
11	Spare 1 (one) for each installed PIDS OCC Server	nos.	1	1	2
12	Spare 10% plus one of each type of Single- sided display	nos.	7	7	14
13	Spare 10% plus one of each type of Double-sided display	nos.	13	13	26
14	Other spare parts recommended by the manufacturer and The Contractor.	Lots	1 Lot	1 Lot	2 Lots
15	PIDS Equipment for Telecom Workshop Training complete including Server, NMS, Workstations, displays and all accessories and software	Lots	1 Lot	1 Lot	2 Lots
16	19" Rack, Cable managers, Optical Distribution Frames, Distribution boards, Patch panels, Loop boxes for fibre, Power Cables, Data Cables, Pigtails, Patch Cards, Connectors, Terminations etc. as per requirements of TS for stations, OCCs, TERs, depots, RSSs, etc.	Lots	1 Lot	1 Lot	2 Lots
17	Any Other Items necessary for meeting fully the Contract Requirements as per TS.	Lots	1 Lot	1 Lot	2 Lots



## 6. Time Distribution System (TDS)

SI. No.	Item Description	UOM	QTY for Bhopal	QTY for Indore	Total QTY
1	TDS Central Server	nos.	4	4	8
2	TDS NMS Server	nos.	2	2	4
3	Hours-minutes Analog display clocks	nos.	122	120	242
4	Hours-minutes-seconds Digital display clocks	nos.	575	557	1132
5	Outdoor Facade clocks 1 - 2 meters diameter	nos.	4	4	8
6	TDS laptop PCs with application software	nos.	2	2	4
7	Test jig of each type recommended by the manufacturer for maintenance of the TDS equipment	sets	1	1	2
8	TDS Equipment for Telecom Workshop Training	sets	1	1	2
9	GNSS rooftop receiver assembly identical to installed on Depot Administration Building, with cables (Spare)	nos.	1	1	2
10	GNSS rooftop antenna assembly identical to installed on Depot Administration Building, with cables (Spare)	nos.	1	1	2
11	GNSS power supply for rooftop receiver identical to installed in TER of Depot Administration Building, with cables (Spare)	nos.	1	1	2
12	Hours-minutes Analog display clocks (Spare)	nos.	10	10	20
13	Hours-minutes-seconds Digital display clocks (Spare)	nos.	25	25	50
14	Spare TDS Server	nos.	1	1	2
15	Other spare parts recommended by the manufacturer and The Contractor.	Lots	1 Lot	1 Lot	2 Lots
16	19" Rack, Cable managers, Optical Distribution Frames, Distribution boards, Patch panels, Loop boxes for fibre, Power Cables, Data Cables, Pigtails, Patch Cards, Connectors, Terminations etc. as per requirements of TS for stations, OCCs, TERs, depots, RSSs, etc.	Lots	1 Lot	1 Lot	2 Lots
17	Any Other Items necessary for meeting fully the Contract Requirements as per TS.	Lots	1 Lot	1 Lot	2 Lots



## 7. Closed Circuit Television System (CCTV)

SI. No.	Item Description	UOM	QTY for Bhopal	QTY for Indore	Total QTY
1	CCTV Servers (Primary, Secondary + Spare)	nos.	4	4	8
2	CCTV Recording Server	nos.	32	31	63
4	CCTV Wall Monitors	sets	1	1	2
5	CCTV Wall Monitors (Spare)	nos.	1	1	2
6	CCTV NMS	nos.	2	2	4
7	Operations CCTV Workstation	nos.	22	22	44
8	Security CCTV Workstations	nos.	84	82	166
9	IP Cameras	nos.	3414	3317	6731
10	Station TER Video Server	nos.	31	30	61
11	CCTV laptop PCs with application software complete with all software and accessories necessary to configure and maintain the CCTV System	nos.	2	2	4
12	CCTV portable CCTV monitors intended for testing of 2MP IP cameras in the field and adjusting the pan, tilt, zoom and focus of the fixed cameras	nos.	4	4	8
13	CCTV portable signal generators intended for testing the resolution of HDMI monitors of the CCTV System	nos.	2	2	4
14	CCV Hand tools for removing and entering the camera enclosure.	nos.	5	5	10
15	CCTV Light level measurement instruments capable of measuring the CCTV camera lowest light level specification	NOS.	2	2	4
16	CCTV Test jig of each type recommended by the manufacturer for maintenance of the CCTV equipment.	sets	1	1	2
17	10% plus one for each installed CCTV Station Workstation	nos.	7	7	14
18	10% plus one for each installed CCTV OCC Workstation	nos.	3	3	6
19	10% plus one for each installed CCTV TER-OCC Video Server	nos.	1	1	2



SI. No.	Item Description	UOM	QTY for Bhopal	QTY for Indore	Total QTY
20	10% plus one for each installed CCTV STN-TER Video Server	nos.	4	4	8
21	5% plus one of each type of multimedia converter used with CCTV	Lots	1 Lot	1 Lot	2 Lots
22	External power supply of each type used for CCTV	Lots	1 Lot	1 Lot	2 Lots
23	10% plus one of each CCTV STN-TER Video Storage media	Lots	1 Lot	1 Lot	2 Lots
24	Projector remote controller	nos.	1	1	2
25	Other spare parts recommended by the manufacturer and The Contractor	Lots	1 Lot	1 Lot	2 Lots
26	CCTV Equipment for Telecom Workshop Training as per Para 6.13	Lots	1 Lot	1 Lot	2 Lots
27	19" Rack, Cable managers, Optical Distribution Frames, Distribution boards, Patch panels, Loop boxes for fibre, Power Cables, Data Cables, Pigtails, Patch Cards, Connectors, Terminations etc. as per requirements of TS for stations, OCCs, TERs, depots, RSSs, etc.	LS	LS	LS	LS
28	Any Other Items necessary for meeting fully the Contract Requirements as per TS.	LS	LS	LS	LS



## 8. Access Control and Intrusion Detection System (ACIDS)

SI. No.	Item Description	UOM	QTY for Bhopal	QTY for Indore	Total QTY
1	ACIDS Access Control and Intrusion Detection Workstations	nos.	11	11	22
2	ACIDS Alarm Annunciator Panels	nos.	65	63	128
3	ACIDS Server	nos.	2	2	4
4	ACIDS Logging Printer	nos.	6	6	12
5	ACIDS Access Control Points complete with ruggedized CSC Reader, Exit unlock button and electric strikes	NOS.	780	757	1537
6	ACIDS NMS	nos.	2	2	4
7	ACIDS Laptop PC with Application Software and accessories to maintain ACIDS system	nos.	1	1	2
8	ACIDS Smartcards	nos.	1000	1000	2000
9	ACIDS Test Jigs	nos.	1	1	2
10	10% plus 1 of each type ACIDS CSC Reader installed	nos.	79	77	156
11	10% plus 1 of each type ACIDS Door open sensor installed	nos.	79	77	156
12	10% plus 1 of each type ACIDS Door Strike installed	nos.	79	77	156
13	Spare Ink Ribbon for ACIDS Logging Printer	nos.	5	5	10
14	Other Spares recommended by manufacturer and The Contractor	Lots	1 Lot	1 Lot	2 Lots
15	19" Rack, Cable managers, Optical Distribution Frames, Distribution boards, Patch panels, Loop boxes for fibre, Power Cables, Data Cables, Pigtails, Patch Cards, Connectors, Terminations etc. as per requirements of TS for stations, OCCs, TERs, depots, RSSs, etc.	Lots	1 Lot	1 Lot	2 Lots
16	Any Other Items necessary for meeting fully the Contract Requirements as per TS.	Lots	1 Lot	1 Lot	2 Lots